Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579162

RESUMEN

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
Environ Sci Technol ; 58(28): 12575-12584, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38952258

RESUMEN

There is a notable lack of continuous monitoring of air pollutants in the Global South, especially for measuring chemical composition, due to the high cost of regulatory monitors. Using our previously developed low-cost method to quantify black carbon (BC) in fine particulate matter (PM2.5) by analyzing reflected red light from ambient particle deposits on glass fiber filters, we estimated hourly ambient BC concentrations with filter tapes from beta attenuation monitors (BAMs). BC measurements obtained through this method were validated against a reference aethalometer between August 2 and 23, 2023 in Addis Ababa, Ethiopia, demonstrating a very strong agreement (R2 = 0.95 and slope = 0.97). We present hourly BC for three cities in sub-Saharan Africa (SSA) and one in North America: Abidjan (Côte d'Ivoire), Accra (Ghana), Addis Ababa (Ethiopia), and Pittsburgh (USA). The average BC concentrations for the measurement period at the Abidjan, Accra, Addis Ababa Central summer, Addis Ababa Central winter, Addis Ababa Jacros winter, and Pittsburgh sites were 3.85 µg/m3, 5.33 µg/m3, 5.63 µg/m3, 3.89 µg/m3, 9.14 µg/m3, and 0.52 µg/m3, respectively. BC made up 14-20% of PM2.5 mass in the SSA cities compared to only 5.6% in Pittsburgh. The hourly BC data at all sites (SSA and North America) show a pronounced diurnal pattern with prominent peaks during the morning and evening rush hours on workdays. A comparison between our measurements and the Goddard Earth Observing System Composition Forecast (GEOS-CF) estimates shows that the model performs well in predicting PM2.5 for most sites but struggles to predict BC at an hourly resolution. Adding more ground measurements could help evaluate and improve the performance of chemical transport models. Our method can potentially use existing BAM networks, such as BAMs at U.S. Embassies around the globe, to measure hourly BC concentrations. The PM2.5 composition data, thus acquired, can be crucial in identifying emission sources and help in effective policymaking in SSA.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Material Particulado , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , África , Carbono/análisis , Hollín/análisis
3.
Environ Sci Technol ; 57(29): 10708-10720, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37437161

RESUMEN

Particulate matter air pollution is a leading cause of global mortality, particularly in Asia and Africa. Addressing the high and wide-ranging air pollution levels requires ambient monitoring, but many low- and middle-income countries (LMICs) remain scarcely monitored. To address these data gaps, recent studies have utilized low-cost sensors. These sensors have varied performance, and little literature exists about sensor intercomparison in Africa. By colocating 2 QuantAQ Modulair-PM, 2 PurpleAir PA-II SD, and 16 Clarity Node-S Generation II monitors with a reference-grade Teledyne monitor in Accra, Ghana, we present the first intercomparisons of different brands of low-cost sensors in Africa, demonstrating that each type of low-cost sensor PM2.5 is strongly correlated with reference PM2.5, but biased high for ambient mixture of sources found in Accra. When compared to a reference monitor, the QuantAQ Modulair-PM has the lowest mean absolute error at 3.04 µg/m3, followed by PurpleAir PA-II (4.54 µg/m3) and Clarity Node-S (13.68 µg/m3). We also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R2: 0.97, 0.94, 0.96; mean absolute error: 0.56, 0.80, and 0.68 µg/m3 for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based models do not perform well when correcting data outside the range of the colocation training. Therefore, we used Gaussian Mixture Regression to correct data from the network of 17 Clarity Node-S monitors deployed around Accra, Ghana, from 2018 to 2021. We find that the network daily average PM2.5 concentration in Accra is 23.4 µg/m3, which is 1.6 times the World Health Organization Daily PM2.5 guideline of 15 µg/m3. While this level is lower than those seen in some larger African cities (such as Kinshasa, Democratic Republic of the Congo), mitigation strategies should be developed soon to prevent further impairment to air quality as Accra, and Ghana as a whole, rapidly grow.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Ghana , Monitoreo del Ambiente , República Democrática del Congo , Material Particulado/análisis , Contaminación del Aire/análisis
5.
ACS Earth Space Chem ; 6(4): 1011-1021, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35495364

RESUMEN

Air pollution is a leading cause of global premature mortality and is especially prevalent in many low- and middle-income countries (LMICs). In sub-Saharan Africa, preliminary monitoring networks, satellite retrievals of air-quality-relevant species, and air quality models show ambient fine particulate matter (PM2.5) concentrations that far exceed the World Health Organization guidelines, yet many areas remain largely unmonitored and understudied. Deploying a network of five low-cost PurpleAir PM2.5 monitors over 2 years (2019-2021), we present the first multiyear ambient air pollution monitoring data results from Lomé, Togo, a major West African coastal city with a population of about 1.4 million people. The full-study time period network-wide mean measured daily PM2.5 concentration is 23.5 µg m-3 m-3. The strong regional influence of the dry and dusty Harmattan wind increases the local average PM2.5 concentration by up to 58% during December through February, but the diurnal and weekly trends in PM2.5 are largely controlled by local influences. At all sites, more than 87% of measured days exceeded the new WHO Daily PM2.5 guidelines; these first measurements highlight the need for air quality improvement in a rapidly growing urban metropolis.

6.
Sci Total Environ ; 765: 144338, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33401063

RESUMEN

Previous studies demonstrated that global warming can lead to deteriorated air quality even when anthropogenic emissions were kept constant, which has been called a climate change penalty on air quality. It is expected that anthropogenic emissions will decrease significantly in the future considering the aggressive emission control actions in China. However, the dependence of climate change penalty on the choice of emission scenario is still uncertain. To fill this gap, we conducted multiple independent model simulations to investigate the response of PM2.5 to future (2050) climate warming (RCP8.5) in China but with different emission scenarios, including the constant 2015 emissions, the 2050 CLE emissions (based on Current Legislation), and the 2050 MTFR emissions (based on Maximum Technically Feasible Reduction). For each set of emissions, we estimate climate change penalty as the difference in PM2.5 between a pair of simulations with either 2015 or 2050 meteorology. Under 2015 emissions, we find a PM2.5 climate change penalty of 1.43 µg m-3 in Eastern China, leading to an additional 35,000 PM2.5-related premature deaths [95% confidence interval (CI), 21,000-40,000] by 2050. However, the PM2.5 climate change penalty weakens to 0.24 µg m-3 with strict anthropogenic emission controls under the 2050 MTFR emissions, which decreases the associated PM2.5-related deaths to 17,000. The smaller MTFR climate change penalty contributes 14% of the total PM2.5 decrease when both emissions and meteorology are changed from 2015 to 2050, and 24% of total health benefits associated with this PM2.5 decrease in Eastern China. This finding suggests that controlling anthropogenic emissions can effectively reduce the climate change penalty on PM2.5 and its associated premature deaths, even though a climate change penalty still occurs even under MTFR. Strengthened controls on anthropogenic emissions are key to attaining air quality targets and protecting human health in the context of future global climate change.

7.
Atmos Chem Phys ; 19(13): 8591-8617, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33273898

RESUMEN

A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters > 50 and > 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (< 0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6 ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (∂N d/∂N a) and to updraft velocity (∂N d/∂w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities ∂N d/∂N a and ∂N d/∂w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain inter-model biases on the aerosol indirect effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA