Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Water Environ Res ; 91(3): 185-197, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30699248

RESUMEN

In this study, concurrent operation of anammox and partial denitrification within a nonacclimated mixed culture system was proposed. The impact of carbon sources (acetate, glycerol, methanol, and ethanol) and COD/NO3- -N ratio on partial denitrification selection under both short- and long-term operations was investigated. Results from short-term testing showed that all carbon sources supported partial denitrification. However, acetate and glycerol were preferred due to their display of efficient partial denitrification selection, which may be related to their different electron transport pathways in comparison with methanol. Long-term operation confirmed results of batch tests by showing the contribution of partial denitrification to nitrate removal above 90% after acclimation in both acetate and glycerol reactors. In contrast, methanol showed challenges of maintaining efficient partial denitrification. COD/NO3- -N ratio mainly controlled the rate of nitrate reduction and not directly partial denitrification selection; thus, it should be used to balance between denitrification rate and anammox rate. PRACTITIONER POINTS: The authors aimed to investigate the impact of carbon sources and COD/NO3-N ratio on partial denitrification selection. All the carbon sources supported partial denitrification as long as the nitrite sink was available. 90% partial denitrification could be achieved with both acetate and glycerol in long-term operations. COD/NO3-N ratio did not directly control partial denitrification but can be used to balance between denitrification rate and anammox rate.


Asunto(s)
Compuestos de Amonio/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Carbono/metabolismo , Desnitrificación , Nitrógeno/metabolismo , Anaerobiosis , Técnicas de Cultivo , Nitratos/metabolismo , Oxidación-Reducción
2.
Water Sci Technol ; 79(1): 84-92, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30816865

RESUMEN

The thermal hydrolysis process (THP) is applied to enhance biogas production in anaerobic digestion (AD), reduce viscosity for improved mixing and dewatering and to reduce and sterilize cake solids. Large heat demands for steam production rely on dynamic effects like sludge throughput, gas availability and THP process parameters. Here, we propose a combined energy and process model suitable to describe the dynamic behaviour of THP in a full-plant context. The process model addresses interactions of THP with operational conditions covered by the AD model obeying mass continuity. Energy conservation is considered in balancing and converting various energy species dominated by thermal heat and calorific energy. The combined energy and process model was then applied on the THP at Blue Plains advanced WWTP (DC Water) to analyse the process and assess potential energy optimizations. It was found that dynamic effects like mismatched steam production and consumption, temporary gas shortages and underloaded units are responsible for energy inefficiencies with losses in electricity-production up to 29%.


Asunto(s)
Biocombustibles , Modelos Estadísticos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Calor , Hidrólisis , Eliminación de Residuos Líquidos/estadística & datos numéricos
3.
Water Sci Technol ; 79(1): 15-25, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30816858

RESUMEN

The implementation of carbon capture technologies such as high-rate activated sludge (HRAS) systems are gaining interests in water resource and recovery facilities (WRRFs) to minimize carbon oxidation and maximize organic carbon recovery and methane potential through biosorption of biodegradable organics into the biomass. Existing activated sludge models were developed to describe chemical oxygen demand (COD) removal in activated sludge systems operating at long solids retention times (SRT) (i.e. 3 days or longer) and fail to simulate the biological reactions at low SRT systems. A new model is developed to describe colloidal material removal and extracellular polymeric substance (EPS) generation, flocculation, and intracellular storage with the objective of extending the range of whole plant models to very short SRT systems. In this study, the model is tested against A-stage (adsorption) pilot reactor performance data and proved to match the COD and colloids removal at low SRT. The model was also tested on longer SRT systems where effluents do not contain much residual colloids, and digestion where colloids from decay processes are present.


Asunto(s)
Carbono , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Coloides , Matriz Extracelular de Sustancias Poliméricas , Floculación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/estadística & datos numéricos
4.
Water Sci Technol ; 75(11-12): 2669-2679, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28617287

RESUMEN

The pursuit of fully autotrophic nitrogen removal via the anaerobic ammonium oxidation (anammox) pathway has led to an increased interest in carbon removal technologies, particularly the A-stage of the adsorption/bio-oxidation (A/B) process. The high-rate operation of the A-stage and lack of automatic process control often results in wide variations of chemical oxygen demand (COD) removal that can ultimately impact nitrogen removal in the downstream B-stage process. This study evaluated the use dissolved oxygen (DO) and mixed liquor suspended solids (MLSS) based automatic control strategies through the use of in situ on-line sensors in the A-stage of an A/B pilot study. The objective of using these control strategies was to reduce the variability of COD removal by the A-stage and thus the variability of the effluent C/N. The use of cascade DO control in the A-stage did not impact COD removal at the conditions tested in this study, likely because the bulk DO concentration (>0.5 mg/L) was maintained above the half saturation coefficient of heterotrophic organisms for DO. MLSS-based solids retention time (SRT) control, where MLSS was used as a surrogate for SRT, did not significantly reduce the effluent C/N variability but it was able to reduce COD removal variation in the A-stage by 90%.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Carbono/metabolismo , Nitrógeno/metabolismo , Oxígeno/metabolismo , Eliminación de Residuos Líquidos/instrumentación , Reactores Biológicos , Oxidación-Reducción , Proyectos Piloto , Eliminación de Residuos Líquidos/métodos
5.
Biotechnol Bioeng ; 113(3): 635-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26333200

RESUMEN

As nitrogen discharge limits are becoming more stringent, short-cut nitrogen systems and tertiary nitrogen polishing steps are gaining popularity. For partial nitritation or nitritation-denitritation systems, anaerobic ammonia oxidation (anammox) polishing may be feasible to remove residual ammonia and nitrite from the effluent. Nitrogen polishing of mainstream nitritation-denitritation system effluent via anammox was studied at 25°C in a fully anoxic moving bed bioreactor (MBBR) (V = 0.45 m(3) ) over 385 days. Unlike other anammox based processes, a very fast startup of anammox MBBR was demonstrated, despite nitrite limited feeding conditions (influent nitrite = 0.7 ± 0.59 mgN/L, ammonia = 6.13 ± 2.86 mgN/L, nitrate = 3.41 ± 1.92 mgN/L). The nitrogen removal performance was very stable within a wide range of nitrogen inputs. Anammox bacteria (AMX) activity up to 1 gN/m(2) /d was observed which is comparable to other biofilm-based systems. It is generally believed that nitrate production limits nitrogen removal through AMX metabolism. However, in this study, anammox MBBR demonstrated ammonia, nitrite, and nitrate removal at limited chemical oxygen demand (COD) availability. AMX and heterotrophs contributed to 0.68 ± 0.17 and 0.32 ± 0.17 of TIN removal, respectively. It was speculated that nitrogen removal might be aided by denitratation which could be due to heterotrophs or the recently discovered ability for AMX to use short-chain fatty acids to reduce nitrate to nitrite. This study demonstrates the feasibility of anammox nitrogen polishing in an MBBR is possible for nitritation-denitration systems.


Asunto(s)
Amoníaco/metabolismo , Bacterias Anaerobias/metabolismo , Reactores Biológicos/microbiología , Nitratos/metabolismo , Nitritos/metabolismo , Nitrógeno/metabolismo , Purificación del Agua , Anaerobiosis , Temperatura
6.
Appl Microbiol Biotechnol ; 100(12): 5595-606, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26893142

RESUMEN

The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 ± 1 % for conventional to 72 ± 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 ± 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 ± 0.10 mg O2/L).


Asunto(s)
Compuestos de Amonio , Bacterias/metabolismo , Desnitrificación , Aguas del Alcantarillado/química , Anaerobiosis , Reactores Biológicos , Hidrólisis , Oxígeno , Aguas del Alcantarillado/microbiología , Temperatura , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
7.
Biotechnol Bioeng ; 112(10): 2060-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26058705

RESUMEN

This work describes the development of an intermittently aerated pilot-scale process (V = 0.45 m(3) ) operated for optimized efficient nitrogen removal in terms of volume, supplemental carbon and alkalinity requirements. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia concentration set-points. The unique feature of the ammonia-based aeration control was that a fixed dissolved oxygen (DO) set-point was used and the length of the aerobic and anoxic time (anoxic time ≥25% of total cycle time) were changed based on the effluent ammonia concentration. Unlike continuously aerated ammonia-based aeration control strategies, this approach offered control over the aerobic solids retention time (SRT) to deal with fluctuating ammonia loading without solely relying on changes to the total SRT. This approach allowed the system to be operated at a total SRT with a small safety factor. The benefits of operating at an aggressive SRT were reduced hydraulic retention time (HRT) for nitrogen removal. As a result of such an operation, nitrite oxidizing bacteria (NOB) out-selection was also obtained (ammonia oxidizing bacteria [AOB] maximum activity: 400 ± 79 mgN/L/d, NOB maximum activity: 257 ± 133 mgN/L/d, P < 0.001) expanding opportunities for short-cut nitrogen removal. The pilot demonstrated a total inorganic nitrogen (TIN) removal rate of 95 ± 30 mgN/L/d at an influent chemical oxygen demand: ammonia (COD/NH4 (+) -N) ratio of 10.2 ± 2.2 at 25°C within the hydraulic retention time (HRT) of 4 h and within a total SRT of 5-10 days. The TIN removal efficiency up to 91% was observed during the study, while effluent TIN was 9.6 ± 4.4 mgN/L. Therefore, this pilot-scale study demonstrates that application of the proposed on-line aeration control is capable of relatively high nitrogen removal without supplemental carbon and alkalinity addition at a low HRT.


Asunto(s)
Amoníaco/metabolismo , Nitrógeno/metabolismo , Aerobiosis , Álcalis/metabolismo , Carbono/metabolismo , Medios de Cultivo/química , Oxígeno/análisis , Temperatura , Purificación del Agua/métodos
8.
Water Sci Technol ; 72(4): 632-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26247763

RESUMEN

This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT=30 min, solids retention time=0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate+nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate+nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75±15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9±1.8 within the HRT range of 3.1-9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT.


Asunto(s)
Amoníaco/metabolismo , Reactores Biológicos , Nitratos/metabolismo , Nitritos/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Oxidación-Reducción , Proyectos Piloto , Aguas del Alcantarillado/análisis , Aguas Residuales/análisis
9.
Water Sci Technol ; 71(7): 971-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25860698

RESUMEN

This study describes the development of a modified activated sludge model No.1 framework to describe the organic substrate transformation in the high-rate activated sludge (HRAS) process. New process mechanisms for dual soluble substrate utilization, production of extracellular polymeric substances (EPS), absorption of soluble substrate (storage), and adsorption of colloidal substrate were included in the modified model. Data from two HRAS pilot plants were investigated to calibrate and to validate the proposed model for HRAS systems. A subdivision of readily biodegradable soluble substrate into a slow and fast fraction were included to allow accurate description of effluent soluble chemical oxygen demand (COD) in HRAS versus longer solids retention time (SRT) systems. The modified model incorporates production of EPS and storage polymers as part of the aerobic growth transformation process on the soluble substrate and transformation processes for flocculation of colloidal COD to particulate COD. The adsorbed organics are then converted through hydrolysis to the slowly biodegradable soluble fraction. Two soluble substrate models were evaluated during this study, i.e., the dual substrate and the diauxic models. Both models used two state variables for biodegradable soluble substrate (SBf and SBs) and a single biomass population. The A-stage pilot typically removed 63% of the soluble substrate (SB) at an SRT <0.13 d and 79% at SRT of 0.23 d. In comparison, the dual substrate model predicted 58% removal at the lower SRT and 78% at the higher SRT, with the diauxic model predicting 32% and 70% removals, respectively. Overall, the dual substrate model provided better results than the diauxic model and therefore it was adopted during this study. The dual substrate model successfully described the higher effluent soluble COD observed in the HRAS systems due to the partial removal of SBs, which is almost completely removed in higher SRT systems.


Asunto(s)
Reactores Biológicos , Modelos Teóricos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Floculación , Hidrólisis , Polímeros
10.
Water Sci Technol ; 71(6): 840-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25812092

RESUMEN

The main challenge in implementing shortcut nitrogen removal processes for mainstream wastewater treatment is the out-selection of nitrite oxidizing bacteria (NOB) to limit nitrate production. A model-based approach was utilized to simulate the impact of individual features of process control strategies to achieve NO(-)(2)-N shunt via NOB out-selection. Simulations were conducted using a two-step nitrogen removal model from the literature. Nitrogen shortcut removal processes from two case studies were modeled to illustrate the contribution of NOB out-selection mechanisms. The paper highlights a comparison between two control schemes; one was based on online measured ammonia and the other was based on a target ratio of 1 for ammonia vs. NOx (nitrate + nitrite) (AVN). Results indicated that the AVN controller possesses unique features to nitrify only that amount of nitrogen that can be denitrified, which promotes better management of incoming organics and bicarbonate for a more efficient NOB out-selection. Finally, the model was used in a scenario analysis, simulating hypothetical optimized performance of the pilot process. An estimated potential saving of 60% in carbon addition for nitrogen removal by implementing full-scale mainstream deammonification was predicted.


Asunto(s)
Bacterias/metabolismo , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Amoníaco/metabolismo , Reactores Biológicos/microbiología , Desnitrificación , Modelos Teóricos , Nitratos/metabolismo , Nitrificación , Nitritos/metabolismo , Oxidación-Reducción , Aguas Residuales/análisis
11.
Water Environ Res ; 96(4): e11023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647151

RESUMEN

The frequent design challenge for existing water resource recovery facilities targets the accommodation of an ~50% load increase within the existing infrastructure and footprint. Off-loading this organic load at the top-end of the plant and redirection toward the digesters has proven the most efficient way of process intensification. The Triple A settler is an "activated primary treatment," stands for alternating activated adsorption, and can be retrofitted into existing rectangular or circular (mostly) primary tanks at a hydraulic retention time of 2 h and a sludge retention time of about 0.5 days. Several technology implementations demonstrate flexible designs adjusting to existing tank geometries and depths of 2.5 to 5.0 m. Different implementation scales from dry-weather flow rates ranging from 0.1 to 10 mgd show generic applicability of the functional principles at any scale: Biosorption, bioflocculation, and assimilation provide the key added value in pretreatment efficiencies of ~60/25/33 in %COD/%N/%P removal compared with application of pure physics in primary settling with typical 33%/9%/11% removal, respectively. PRACTITIONERS POINTS: Triple A is a hybrid form of A-stage and contact stabilizer for advanced primary treatment. Besides COD and TSS, also, P and N can be removed via Triple A. Triple A can be retrofitted in existing rectangular or circular tanks. This high-rate process does not worsen the conditions for enhanced biological phosphorus removal. Energy efficiency, capacity increase, and operational benefits are the main goals of Triple A.


Asunto(s)
Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Reactores Biológicos , Aguas del Alcantarillado/química , Fósforo/química
12.
Water Res ; 242: 120245, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356157

RESUMEN

There have been significant advances in the use of biological and physical selectors for the intensification of continuously flowing biological wastewater treatment (WWT) processes. Biological selection allows for the development of large biological aggregates (e.g., mobile biofilm, aerobic granules, and densified biological flocs). Physical selection controls the solids residence times of large biological aggregates and ordinary biological flocs, and is usually accomplished using screens or hydrocyclones. Large biological aggregates can facilitate different biological transformations in a single reactor and enhance liquid and solids separation. Continuous-flow WWT processes incorporating biological and physical selectors offer benefits that can include reduced footprint, lower costs, and improved WWT process performance. Thus, it is expected that both interest in and application of these processes will increase significantly in the future. This review provides a comprehensive summary of biological and physical selectors and their design and operation.

13.
Water Environ Res ; 94(1): e1664, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34806253

RESUMEN

Full-scale demonstration of activated sludge conversion into a granule-floc hybrid process was implemented in Dijon (France) water resource recovery facility (WRRF). Biomass densification was achieved based on external gravimetric selection using hydrocyclones within continuous-flow anaerobic-anoxic-oxic (A2 O) biological nutrient removal (BNR) bioreactor. The goal was to optimize settleability of biological sludge by lowering and stabilizing sludge volume index (SVI) to improve process robustness and resiliency. Process proved to stabilize operation and to uncouple the total solids residence time (SRT) between floc and granule morphologies. The densified biomass initially produced stable SVI < 100 ml/g for a period of 4 months and thereafter a steady state year-round SVI below 50 ml/g, including the winter period during which the control train SVI expansion >200 ml/g. The densified biomass successfully broke the vicious cycle of interannual bulking. Form and function interrelationship is proposed for the densified biomass (hybrid floc-granule). The concept of biological architecture is proposed as the purposeful control of granule and floc proportions, with a proposed "form factor" ratio of 1:2 granule to floc, that produce a "SRT uncoupling function factor" ratio of 4:1 granule to floc, further resulting in very stable settling and effluent functionalities. PRACTITIONER POINTS: Controlling granule-floc proportions allows for sludge volume index (SVI) operational adjustment, which further allows for increased clarified design accuracy. One-third aggregates dramatically improved settling characteristics: 20% and 35% of AGS ensures SVIs below 100 and 50 ml/g, respectively. Densified biomass enables new SRT and clarifier flux rates approaches for engineering and operation practices: Doubling typical surface loading rates from 6.0-8.5 to 15-20 kg m-2  h-1 and surface overflow rates from 0.6-0.8 to 1.5-2.4 m/h SRT uncoupling of 1:4 is achieved between floc and granule, enabling specific niche environment for fast and slow growing organisms.


Asunto(s)
Aguas del Alcantarillado , Recursos Hídricos , Biomasa , Reactores Biológicos , Nutrientes , Eliminación de Residuos Líquidos
14.
Chemosphere ; 308(Pt 2): 136294, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084824

RESUMEN

High-rate activated sludge (HRAS) relies on good bioflocculation and subsequent solid-liquid separation to maximize the capture of organics. However, full-scale applications often suffer from poor and unpredictable effluent suspended solids (ESS). While the biological aspects of bioflocculation are thoroughly investigated, the effects of fines (settling velocity < 0.6 m3/m2/h), shear and surface overflow rate (SOR) are unclear. This work tackled the impact of fines, shear, and SOR on the ESS in absence of settleable influent solids. This was assessed on a full-scale HRAS step-feed (SF) and pilot-scale HRAS contact-stabilization (CS) configuration using batch settling tests, controlled clarifier experiments, and continuous operation of reactors. Fines contributed up to 25% of the ESS in the full-scale SF configuration. ESS decreased up to 30 mg TSS/L when bioflocculation was enhanced with the CS configuration. The feast-famine regime applied in CS promoted the production of high-quality extracellular polymeric substances (EPS). However, this resulted in a narrow and unfavorable settling velocity distribution, with 50% ± 5% of the sludge mass settling between 0.6 and 1.5 m3/m2/h, thus increasing sensitivity towards SOR changes. A low shear environment (20 s-1) before the clarifier for at least one min was enough to ensure the best possible settling velocity distribution, regardless of prior shear conditions. Overall, this paper provides a more complete view on the drivers of ESS in HRAS systems, creating the foundation for the design of effective HRAS clarifiers. Tangible recommendations are given on how to manage fines and establish the optimal settling velocity of the sludge.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Floculación , Eliminación de Residuos Líquidos/métodos
15.
Water Res ; 218: 118517, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35512538

RESUMEN

Sidestream partial nitritation and deammonification (pN/A) of high-strength ammonia wastewater is a well-established technology. Its expansion to the mainstream is, however mainly impeded by poor retention of anaerobic ammonia oxidizing bacteria (AnAOB), insufficient repression of nitrite oxidizing bacteria (NOB) and difficult control of soluble chemical oxygen demand and nitrite levels. At the municipal wastewater treatment plant in Strass (Austria) the microbial consortium was exhaustively monitored at full-scale over one and a half year with regular transfer of sidestream DEMON® biomass and further retention and enrichment of granular anammox biomass via hydrocyclone operation. Routine process parameters were surveyed and the response and evolution of the microbiota was followed by molecular tools, ex-situ activity tests and further, AnAOB quantification through particle tracking and heme measurement. After eight months of operation, the first anaerobic, simultaneous depletion of ammonia and nitrite was observed ex-situ, together with a direction to higher nitrite generation (68% of total NOx-N) as compared to nitrate under aerobic conditions. Our dissolved oxygen (DO) scheme allowed for transient anoxic conditions and had a strong influence on nitrite levels and the NOB community, where Nitrobacter eventually dominated Nitrospira. The establishment of a minor but stable AnAOB biomass was accompanied by the rise of Chloroflexi and distinct emergence of Chlorobi, a trend not seen in the sidestream system. Interestingly, the most pronounced switch in the microbial community and noticeable NOB repression occurred during unfavorable conditions, i.e. the cold winter season and high organic load. Further abatement of NOB was achieved through bioaugmentation of aerobic ammonia oxidizing bacteria (AerAOB) from the sidestream-DEMON® tank. Performance of the sidestream pN/A was not impaired by this operational scheme and the average volumetric nitrogen removal rate of the mainstream even doubled in the second half of the monitoring campaign. We conclude that a combination of both, regular sidestream-DEMON® biomass transfer and granular SRT increase via hydrocyclone operation was crucial for AnAOB establishment within the mainstream.


Asunto(s)
Amoníaco , Nitritos , Bacterias , Biomasa , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales/análisis
16.
Water Environ Res ; 94(5): e10724, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35614874

RESUMEN

Retrofitting conventional denitrification filters into partial denitrification-anammox (PdNA)- or anammox (AnAOB)-based filters will reduce the needs for external carbon addition. The success of AnAOB-based filters depends on anammox growth and retention within such filters. Studies have overlooked the importance of media selection and its impact on AnAOB capacity, head loss progression dynamics, and shear conditions applied onto the AnAOB biofilm. The objective of this study was to evaluate viable media types (10 types) that can enhance AnAOB rates for efficient nitrogen removal in filters. Given the higher backwash requirement and lower AnAOB capacity of the conventionally used sand, expanded clay (3-5 mm) was recommended for AnAOB-based filters in this study. Owing to its surface characteristics, expanded clay had higher AnAOB activity (304- vs. 104-g NH4 + -N/m2 /day) and higher AnAOB retention (43% more) than sand. Increasing the iron content of expanded clay to 37% resulted in an increase in zeta potential, which led to 56% more anammox capacity compared to expanded clay with 7% iron content. This work provides insight into the importance of media types in the growth and retention of AnAOB in filters, and this knowledge could be used as basis in the development of PdNA filters. PRACTITIONER POINTS: Expanded clay showed the lowest head loss buildup and most likely will result in longer runtime for full-scale PdNA applications The highest AnAOB rates were achieved in expanded clay types and sand compared with smaller media typically used in biofiltration Expanded clay resulted in better AnAOB retention under shear, whereas sand could not withstand shear and required more frequent backwashing Expanded clay iron coating enhanced AnAOB enrichment and retention, most likely due to increased surface roughness and/or positive charge.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Arcilla , Medios de Cultivo , Hierro , Nitrógeno , Oxidación-Reducción , Arena , Aguas del Alcantarillado
17.
Water Environ Res ; 94(8): e10772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35965329

RESUMEN

High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52-0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes. PRACTITIONER POINTS: Online bioflocculation boundaries (upper and lower limit) were defined by the OUR ratio between contactor and stabilizer (feast/famine). To maintain effluent quality, carbon oxidation was minimized when bioflocculation was not limited (0.52-0.95 OUR ratio) and increased otherwise. A fully automated control concept was piloted, also a more simplified semiautomated option was proposed. Wasting control strategies with bioflocculation boundaries improved effluent quality while meeting carbon capture goals. Bioflocculation boundaries are easily applied to current wasting control schemes applied to HRAS systems (i.e., MLSS, SRT, and OUR controls).


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Carbono , Aguas del Alcantarillado
18.
Water Environ Res ; 93(8): 1315-1321, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33484610

RESUMEN

Exclusively air-driven operation is an essential feature of the cyclic activated sludge process BIOCOS. Switching the air-flow between diffusers, agitation, and recycle air-lift keeps operation and maintenance simple and leads to significant energy savings used for mechanical devices. The overall energy demand for the whole biological system with settling was found to be below 20 kWh/PE.a. This hybrid technology shows a constant water level characteristic for continuous flow systems and time-based control. Modular rectangular tank configuration and high solids operation targets a compact footprint. Process wise, the settling sludge blanket in the two alternating settling tanks was found to contribute considerably to post-denitrification and enhances phosphorus removal. During the last years, approximately 200 BIOCOS plants have been implemented mainly in Germany, Austria, Spain, and China, some of the operational results are presented in this paper. PRACTITIONERS POINTS: BIOCOS is a hybrid process with alternating settling tanks at constant water level. The performance of demonstration plants shows high resilience against hydraulic and organic peak loads. The energy demand for the process was found to be very small. The process is driven with no electromechanical equipment but one main blower station. The sludge blanket in the alternating settler significantly contributes to denitrification and phosphorus removal.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Reactores Biológicos , Fósforo , Eliminación de Residuos Líquidos
19.
Water Res ; 190: 116294, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360101

RESUMEN

Improved settleability has become an essential feature of new wastewater treatment innovations. To accelerate adoption of such new technologies, improved clarifier models are needed to help with designing and predicting improvement in settleability. In general, the level of mathematics of settling clarifier models has gone far beyond the level of existing experimental methods available to support these models. To date, even for simple one-dimensional (1D) clarifier models, no experimental method has been described for flocculent settling coefficient (rp). As a consequence, rp cannot be considered as a sludge characteristic and is used as a calibration parameter to achieve observed effluent quality. In this study, we focused on the development of an empirical function based on a simple and practical experimental approach for the calculation of the rp value from sludge characteristics. This approach provided a similar approach as currently taken for hindered settling coefficient calculations (Veslind equation) and allowed for the model to predict effluent quality, thus increasing the power of the 1D model. The threshold of flocculation (TOF), which describes the collision efficiency of particles, directly correlated with the effluent quality of the five tested activated sludge systems and was selected as experimental method. The proposed empirical function between TOF and rp was validated for four years of validating data with five different sludge types operated under different operational conditions and configurations. The good effluent quality prediction with this approach brings us one step closer in making the clarification models more predictive towards effluent quality and clarifier performance.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Calibración , Floculación , Modelos Teóricos , Aguas del Alcantarillado
20.
Water Environ Res ; 93(7): 1044-1059, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33277759

RESUMEN

Primary sludge fermentate, a concentrated hydrolyzed wastewater carbon, was evaluated for use as an alternative carbon source for mainstream partial denitrification-anammox (PdNA) in a suspended growth activated sludge process in terms of partial denitrification (PdN) efficiency, PdNA nitrogen removal contributions, and final effluent quality. Fermenter operation at a 2-day sludge retention time (SRT) resulted in the maximum achievable yield of 0.14 ± 0.05 g sCOD/g VSS without release of excessive ammonia and phosphorus to the system. Based on the results of batch experiments, fermentate addition led to PdN efficiency of 93 ± 14%, which was similar to acetate at a nitrate residual of 2-3 mg N/L. In the pilot-scale mainstream deammonification reactor, PdN efficiency using fermentate was 49 ± 24%, which was lower than acetate (66 ± 24% during acetate period I and 70 ± 21% during acetate period II), most probably due to lower nitrate and ammonium kinetics in the PdN zone. Methanol cost-saving potential for the application of PdNA as the main short-cut nitrogen pathway was estimated to be 30% to 55% depending on the PdN efficiency achieved. PRACTITIONER POINTS: Primary sludge fermentate was evaluated as an alternative carbon source for mainstream partial denitrification-anammox (PdNA). Fermenter operated at a 1 to 2 day SRT resulted in the maximum achievable yield without the release of excessive ammonia and phosphorus to the system. Although 93% partial denitrification efficiency was achieved with fermentate in batch experiments, around 49% PdN efficiency was achieved in pilot studies. Application of PdNA with fermentate can result in significant methanol cost savings.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Reactores Biológicos , Carbono , Nitrógeno , Oxidación-Reducción , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA