Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742839

RESUMEN

Aneurysm is the second-most common disease affecting the aorta worldwide after atherosclerosis. While several clinical metabolomic studies have been reported, no study has reported deep metabolomic phenotyping in experimental animal models of aortic aneurysm. We performed a targeted metabolomics study on the blood and aortas of an experimental mice model of aortic aneurysm generated by high-cholesterol diet and angiotensin II in Ldlr-/- mice. The mice model showed a significant increase in media/lumen ratio and wall area, which is associated with lipid deposition within the adventitia, describing a hypertrophic remodeling with an aneurysm profile of the abdominal aorta. Altered aortas showed increased collagen remodeling, disruption of lipid metabolism, decreased glucose, nitric oxide and lysine metabolisms, and increased polyamines and asymmetric dimethylarginine (ADMA) production. In blood, a major hyperlipidemia was observed with decreased concentrations of glutamine, glycine, taurine, and carnitine, and increased concentrations of the branched amino acids (BCAA). The BCAA/glycine and BCAA/glutamine ratios discriminated with very good sensitivity and specificity between aneurysmatic and non-aneurysmatic mice. To conclude, our results reveal that experimental induction of aortic aneurysms causes a profound alteration in the metabolic profile in aortas and blood, mainly centered on an alteration of NO, lipid, and energetic metabolisms.


Asunto(s)
Aneurisma de la Aorta Abdominal , Hipercolesterolemia , Hiperlipidemias , Receptores de LDL/metabolismo , Angiotensina II/metabolismo , Animales , Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Glutamina/metabolismo , Glicina/metabolismo , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Lípidos , Metabolómica , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502189

RESUMEN

Since its discovery, mitophagy has been viewed as a protective mechanism used by cancer cells to prevent the induction of mitochondrial apoptosis. Most cancer treatments directly or indirectly cause mitochondrial dysfunction in order to trigger signals for cell death. Elimination of these dysfunctional mitochondria by mitophagy could thus prevent the initiation of the apoptotic cascade. In breast cancer patients, resistance to doxorubicin (DOX), one of the most widely used cancer drugs, is an important cause of poor clinical outcomes. However, the role played by mitophagy in the context of DOX resistance in breast cancer cells is not well understood. We therefore tried to determine whether an increase in mitophagic flux was associated with the resistance of breast cancer cells to DOX. Our first objective was to explore whether DOX-resistant breast cancer cells were characterized by conditions that favor mitophagy induction. We next tried to determine whether mitophagic flux was increased in DOX-resistant cells in response to DOX treatment. For this purpose, the parental (MCF-7) and DOX-resistant (MCF-7dox) breast cancer cell lines were used. Our results show that mitochondrial reactive oxygen species (ROS) production and hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression are higher in MCF-7dox in a basal condition compared to MCF-7, suggesting DOX-resistant breast cancer cells are prone to stimuli to induce a mitophagy-related event. Our results also showed that, in response to DOX, autophagolysosome formation is induced in DOX-resistant breast cancer cells. This mitophagic step following DOX treatment seems to be partly due to mitochondrial ROS production as autophagolysosome formation is moderately decreased by the mitochondrial antioxidant mitoTEMPO.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Lisosomas , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Doxorrubicina/uso terapéutico , Femenino , Humanos , Células MCF-7 , Mitocondrias/metabolismo
3.
J Clin Med ; 11(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35054098

RESUMEN

About half of patients with Graves' disease develop an orbitopathy related to an inflammatory expansion of the periorbital adipose tissue and muscles. We used a targeted metabolomic approach measuring 188 metabolites by mass spectrometry to compare the metabolic composition of tears in patients with active (n = 21) versus inactive (n = 24) thyroid-associated orbitopathy. Among the 44 metabolites accurately measured, 8 showed a significant alteration of their concentrations between the two groups. Two short-chain acylcarnitines, propionylcarnitine and butyrylcarnitine, and spermine showed increased concentrations in the tears of patients with active orbitopathy, whereas ornithine, glycine, serine, citrulline and histidine showed decreased concentrations in this group. In addition, the ratio putrescine/ornithine, representing the activity of ornithine decarboxylase, was significantly increased in patients with active compared to inactive orbitopathy (p = 0.0011, fold change 3.75). The specificity of this candidate biomarker was maintained when compared to a control group with unclassified dry eye disease. Our results suggest that the stimulation of ornithine decarboxylase by TSH receptor autoantibodies in orbital fibroblasts could lead to increased synthesis of spermine, through the increased activity of ornithine decarboxylase, that may contribute to periorbital expansion in Graves' ophthalmopathy.

4.
Brain Commun ; 3(2): fcab063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056600

RESUMEN

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

5.
Am J Physiol Endocrinol Metab ; 297(5): E1162-70, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19724020

RESUMEN

The aim of this study was to investigate the effect of rimonabant treatment on hepatic mitochondrial function in rats fed a high-fat diet. Sprague-Dawley rats fed a high-fat diet (35% lard) for 13 wk were treated with rimonabant (10 mg·kg(-1)·day(-1)) during the last 3 wk and matched with pair-fed controls. Oxygen consumption with various substrates, mitochondrial enzyme activities on isolated liver mitochondria, and mitochondrial DNA quantity were determined. Body weight and fat mass were decreased in rats treated with rimonabant compared with pair-fed controls. Moreover, the serum adiponectin level was increased with rimonabant. Hepatic triglyceride content was increased, while serum triglycerides were decreased. An increase of mitochondrial respiration was observed in rats treated with rimonabant. The increase of mitochondrial respiration with palmitoyl-CoA compared with respiration with palmitoyl-l-carnitine stating that the entry of fatty acids into mitochondria via carnitine palmitoyltransferase I was increased in rats treated with rimonabant. Moreover, rimonabant treatment led to a reduction in the enzymatic activity of ATP synthase, whereas the quantity of mitochondrial DNA and the activity of citrate synthase remained unchanged. To summarize, rimonabant treatment leads to an improvement of hepatic mitochondrial function by increasing substrate oxidation and fatty acid entry into mitochondria for the ß-oxidation pathway and by increasing proton leak. However, this increase of mitochondrial oxidation is regulated by a decrease of ATP synthase activity in order to have only ATP required for the cell function.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/farmacología , Mitocondrias Hepáticas/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Adiponectina/metabolismo , Animales , Composición Corporal/fisiología , ADN/biosíntesis , ADN/aislamiento & purificación , ADN Mitocondrial/metabolismo , Ingestión de Alimentos/fisiología , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Pruebas de Función Hepática , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Rimonabant , Triglicéridos/metabolismo , Pérdida de Peso/fisiología
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2475-2489, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31121247

RESUMEN

Due to its pivotal role in NADH oxidation and ATP synthesis, mitochondrial complex I (CI) emerged as a crucial regulator of cellular metabolism. A functional CI relies on the sequential assembly of nuclear- and mtDNA-encoded subunits; however, whether CI assembly status is involved in the metabolic adaptations in CI deficiency still remains largely unknown. Here, we investigated the relationship between CI functions, its structure and the cellular metabolism in 29 patient fibroblasts representative of most CI mitochondrial diseases. Our results show that, contrary to the generally accepted view, a complex I deficiency does not necessarily lead to a glycolytic switch, i.e. the so-called Warburg effect, but that this particular metabolic adaptation is a feature of CI assembly defect. By contrast, a CI functional defect without disassembly induces a higher catabolism to sustain the oxidative metabolism. Mechanistically, we demonstrate that reactive oxygen species overproduction by CI assembly intermediates and subsequent AMPK-dependent Pyruvate Dehydrogenase inactivation are key players of this metabolic reprogramming. Thus, this study provides a two-way-model of metabolic responses to CI deficiencies that are central not only in defining therapeutic strategies for mitochondrial diseases, but also in all pathophysiological conditions involving a CI deficiency.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Ciclo del Ácido Cítrico , Fibroblastos/citología , Fibroblastos/metabolismo , Glucólisis , Humanos , Ingeniería Metabólica , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , NADH Deshidrogenasa/antagonistas & inhibidores , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Análisis de Componente Principal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Int J Biochem Cell Biol ; 51: 93-101, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24727425

RESUMEN

Acute intermittent porphyria (AIP), an inherited hepatic disorder, is due to a defect of hydroxymethylbilane synthase (HMBS), an enzyme involved in heme biosynthesis. AIP is characterized by recurrent, life-threatening attacks at least partly due to the increased hepatic production of 5-aminolaevulinic acid (ALA). Both the mitochondrial enzyme, ALA synthase (ALAS) 1, involved in the first step of heme biosynthesis, which is closely linked to mitochondrial bioenergetic pathways, and the promise of an ALAS1 siRNA hepatic therapy in humans, led us to investigate hepatic energetic metabolism in Hmbs KO mice treated with phenobarbital. The mitochondrial respiratory chain (RC) and the tricarboxylic acid (TCA) cycle were explored in the Hmbs(-/-) mouse model. RC and TCA cycle were significantly affected in comparison to controls in mice treated with phenobarbital with decreased activities of RC complexes I (-52%, (**)p<0.01), II (-50%, (**)p<0.01) and III (-55%, (*)p<0.05), and decreased activity of α-ketoglutarate dehydrogenase (-64%, (*)p<0.05), citrate synthase (-48%, (**)p<0.01) and succinate dehydrogenase (-53%, (*)p<0.05). Complex II-driven succinate respiration was also significantly affected. Most of these metabolic alterations were at least partially restored after the phenobarbital arrest and heme arginate administration. These results suggest a cataplerosis of the TCA cycle induced by phenobarbital, caused by the massive withdrawal of succinyl-CoA by ALAS induction, such that the TCA cycle is unable to supply the reduced cofactors to the RC. This profound and reversible impact of AIP on mitochondrial energetic metabolism offers new insights into the beneficial effect of heme, glucose and ALAS1 siRNA treatments by limiting the cataplerosis of TCA cycle.


Asunto(s)
Hepatopatías/etiología , Mitocondrias/metabolismo , Porfiria Intermitente Aguda/complicaciones , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Hepatopatías/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa , Porfiria Intermitente Aguda/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA