Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 58(5): 3302-3307, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30762348

RESUMEN

The nitride-hydride Ba3CrN3H was obtained in single crystalline form using flux growth techniques based on alkaline earth metals. Ba3CrN3H crystallizes in the hexagonal space group P63/ m (Nr 176), with the lattice parameters a = 8.0270(2) Å, c = 5.6240(1) Å, and Z = 2. The structure comprises [CrN3]5- trigonal planar units and [HBa6]11+ octahedral units. The presence of anionic hydrogen in the structure has been verified by 1H NMR experiments. DFT calculations show that the addition of hydrogen increases the stability of the phase versus Ba3CrN3. The two d-electrons of Cr4+ are located in the nonbonding d z2 orbital, rendering Ba3CrN3H nonmagnetic and insulating.

2.
Inorg Chem ; 57(4): 1727-1734, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29393626

RESUMEN

Single crystals of a new family of layered lanthanide oxychlorides, Ba3Ln2O5Cl2 (Ln = Gd-Lu), have been synthesized from a molten barium flux. This family crystallizes in the space group I4/mmm (No. 139; Z = 2) with lattice parameters a = 4.3384(1)-4.4541(1) Å and c = 24.5108(7)-24.8448(9) Å. Ba3Ln2O5Cl2 phases are built up of two different blocks: a perovskite double layer of stoichiometry Ba2Ln2O5 formed by corner-connected LnO5 tetragonal bipyramids and a puckered rock-salt-like interlayer of composition BaCl2. A complete structural study along with bond-valence-sum calculations shows that, for lanthanides larger than gadolinium, the structure becomes unstable. Density functional theory calculations show that the valence-band edge is dominated by oxygen orbitals, whereas the conduction band forms from Ba 5d orbitals. The synthesis of this family suggests a route to other potential multianion phases.

3.
Inorg Chem ; 52(6): 3342-8, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23470142

RESUMEN

Reactions of europium and tin in 1:1 Mg/Al mixed flux produce large crystals of EuMgSn. This phase crystallizes with the TiNiSi structure type in orthorhombic space group Pnma (a = 8.0849(7) Å, b = 4.8517(4) Å, c = 8.7504(8) Å, Z = 4, R1 = 0.0137). The crystal structure features europium cations positioned between puckered hexagonal layers comprised of magnesium and tin atoms. Magnetic susceptibility measurements indicate the europium in this phase is divalent, which suggests that the compound is possibly valence-balanced as Eu(2+)Mg(2+)Sn(4-). However, EuMgSn is a metal as indicated by density of states calculations and electrical resistivity behavior. This phase exhibits antiferromagnetic ordering at T(N) = 10.9 K at low field (100 G) and the ordering temperature decreases when a higher magnetic field is applied. ac magnetization and field dependence of resistivity at 4.2 K reveal that there is a spin reorientation at 2 T, in agreement with the metamagnetic transition shown in the dc magnetization versus field data. Temperature dependence of resistivity at 2.5 T indicates that EuMgSn has a large magnetoresistance up to -30% near its magnetic ordering temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA