Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 141(7): 1171-82, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20602999

RESUMEN

Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further.


Asunto(s)
Elementos Transponibles de ADN , Genoma Humano , Estudio de Asociación del Genoma Completo , Análisis de Secuencia por Matrices de Oligonucleótidos , Cromosomas Humanos X , Enzimas de Restricción del ADN/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino
2.
Genomics ; 113(6): 4163-4172, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748900

RESUMEN

This analysis presents five genome assemblies of four Notostraca taxa. Notostraca origin dates to the Permian/Upper Devonian and the extant forms show a striking morphological similarity to fossil taxa. The comparison of sequenced genomes with other Branchiopoda genomes shows that, despite the morphological stasis, Notostraca share a dynamic genome evolution with high turnover for gene families' expansion/contraction and a transposable elements content comparable to other branchiopods. While Notostraca substitutions rate appears similar or lower in comparison to other branchiopods, a subset of genes shows a faster evolutionary pace, highlighting the difficulty of generalizing about genomic stasis versus dynamism. Moreover, we found that the variation of Triops cancriformis transposable elements content appeared linked to reproductive strategies, in line with theoretical expectations. Overall, besides providing new genomic resources for the study of these organisms, which appear relevant for their ecology and evolution, we also confirmed the decoupling of morphological and molecular evolution.


Asunto(s)
Crustáceos , Evolución Molecular , Animales , Crustáceos/genética , Genómica , Larva , Filogenia
3.
Mol Cell ; 52(4): 485-94, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24211263

RESUMEN

Loss or duplication of chromosome segments can lead to further genomic changes associated with cancer. However, it is not known whether only a select subset of genes is responsible for driving further changes. To determine whether perturbation of any given gene in a genome suffices to drive subsequent genetic changes, we analyzed the yeast knockout collection for secondary mutations of functional consequence. Unlike wild-type, most gene knockout strains were found to have one additional mutant gene affecting nutrient responses and/or heat-stress-induced cell death. Moreover, independent knockouts of the same gene often evolved mutations in the same secondary gene. Genome sequencing identified acquired mutations in several human tumor suppressor homologs. Thus, mutation of any single gene may cause a genomic imbalance, with consequences sufficient to drive adaptive genetic changes. This complicates genetic analyses but is a logical consequence of losing a functional unit originally acquired under pressure during evolution.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae/genética , Adaptación Biológica/genética , Secuencia de Bases , Evolución Molecular , Eliminación de Gen , Técnicas de Inactivación de Genes , Heterogeneidad Genética , Inestabilidad Genómica , Humanos , Mutación , Neoplasias/genética , Fenotipo , Análisis de Secuencia de ADN , Estrés Fisiológico/genética
4.
Genes Immun ; 21(5): 348-359, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116245

RESUMEN

Clearance of acute infection with hepatitis C virus (HCV) is associated with the chr19q13.13 region containing the rs368234815 (TT/ΔG) polymorphism. We fine-mapped this region to detect possible causal variants that may contribute to HCV clearance. First, we performed sequencing of IFNL1-IFNL4 region in 64 individuals sampled according to rs368234815 genotype: TT/clearance (N = 16) and ΔG/persistent (N = 15) (genotype-outcome concordant) or TT/persistent (N = 19) and ΔG/clearance (N = 14) (discordant). 25 SNPs had a difference in counts of alternative allele >5 between clearance and persistence individuals. Then, we evaluated those markers in an association analysis of HCV clearance conditioning on rs368234815 in two groups of European (692 clearance/1 025 persistence) and African ancestry (320 clearance/1 515 persistence) individuals. 10/25 variants were associated (P < 0.05) in the conditioned analysis leaded by rs4803221 (P value = 4.9 × 10-04) and rs8099917 (P value = 5.5 × 10-04). In the European ancestry group, individuals with the haplotype rs368234815ΔG/rs4803221C were 1.7× more likely to clear than those with the rs368234815ΔG/rs4803221G haplotype (P value = 3.6 × 10-05). For another nearby SNP, the haplotype of rs368234815ΔG/rs8099917T was associated with HCV clearance compared to rs368234815ΔG/rs8099917G (OR: 1.6, P value = 1.8 × 10-04). We identified four possible causal variants: rs368234815, rs12982533, rs10612351 and rs4803221. Our results suggest a main signal of association represented by rs368234815, with contributions from rs4803221, and/or nearby SNPs including rs8099917.


Asunto(s)
Hepatitis C/genética , Interferones/genética , Polimorfismo de Nucleótido Simple , Población Negra/genética , Haplotipos , Hepatitis C/etnología , Hepatitis C/patología , Humanos , Fenotipo , Población Blanca/genética
5.
Bioinformatics ; 35(4): 665-670, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30052772

RESUMEN

MOTIVATION: DNA sequencing archives have grown to enormous scales in recent years, and thousands of human genomes have already been sequenced. The size of these data sets has made searching the raw read data infeasible without high-performance data-query technology. Additionally, it is challenging to search a repository of short-read data using relational logic and to apply that logic across samples from multiple whole-genome sequencing samples. RESULTS: We have built a compact, efficiently-indexed database that contains the raw read data for over 250 human genomes, encompassing trillions of bases of DNA, and that allows users to search these data in real-time. The Terabase Search Engine enables retrieval from this database of all the reads for any genomic location in a matter of seconds. Users can search using a range of positions or a specific sequence that is aligned to the genome on the fly. AVAILABILITY AND IMPLEMENTATION: Public access to the Terabase Search Engine database is available at http://tse.idies.jhu.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos Genéticas , Motor de Búsqueda , Programas Informáticos , Genoma Humano , Genómica , Humanos , Análisis de Secuencia de ADN
6.
J Pathol ; 244(1): 11-24, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28888037

RESUMEN

Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate-limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high-grade prostatic intraepithelial neoplasia or PIN) and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in eight cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma and that its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Interferente Pequeño/genética , ARN/genética , Telomerasa/genética , Adulto , Anciano , Animales , Proliferación Celular , Genes Reporteros , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Próstata/patología , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/patología , Análisis de Secuencia de ARN , Telómero/genética
7.
Prostate ; 78(12): 896-904, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29761525

RESUMEN

BACKGROUND: Rare prostate carcinomas aberrantly express p63 and have an immunophenotype intermediate between basal and luminal cells. Here, we performed gene expression profiling on p63-expressing prostatic carcinomas and compared them to usual-type adenocarcinoma. We identify ETS2 as highly expressed in p63-expressing prostatic carcinomas and benign prostate basal cells, with lower expression in luminal cells and primary usual-type adenocarcinomas. METHODS: A total of 8 p63-expressing prostate carcinomas at radical prostatectomy were compared to 358 usual-type adenocarcinomas by gene expression profiling performed on formalin fixed paraffin embedded tumor tissue using Affymetrix 1.0 ST microarrays. Correlation between differentially expressed genes and TP63 expression was performed in 5239 prostate adenocarcinomas available in the Decipher GRID. For validation, ETS2 in situ hybridization was performed on 19 p63-expressing prostate carcinomas and 30 usual-type adenocarcinomas arrayed on tissue microarrays (TMA). RESULTS: By gene expression, p63-expressing prostate carcinomas showed low cell cycle activity and low Decipher prognostic scores, but were predicted to have high Gleason grade compared to usual-type adenocarcinomas by gene expression signatures and morphology. Among the genes over-expressed in p63-expressing carcinoma relative to usual-type adenocarcinoma were known p63-regulated genes, along with ETS2, an ETS family member previously implicated as a prostate cancer tumor suppressor gene. Across several cohorts of prostate samples, ETS2 gene expression was correlated with TP63 expression and was significantly higher in benign prostate compared to usual-type adenocarcinoma. By in situ hybridization, ETS2 gene expression was high in benign basal cells, and low to undetectable in benign luminal cells or usual-type adenocarcinoma. In contrast, ETS2 was highly expressed in 95% (18/19) of p63-expressing prostate carcinomas. CONCLUSIONS: ETS2 is a predominantly basally-expressed gene in the prostate, with low expression in usual-type adenocarcinoma and high expression in p63-expressing carcinomas. Given this pattern, the significance of ETS2 loss by deletion or mutation in usual-type adenocarcinomas is uncertain.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Próstata/química , Neoplasias de la Próstata/genética , Proteína Proto-Oncogénica c-ets-2/análisis , Factores de Transcripción/análisis , Proteínas Supresoras de Tumor/análisis , Adenocarcinoma/química , Adenocarcinoma/genética , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Hibridación in Situ , Masculino , Próstata/química , Prostatectomía , Neoplasias de la Próstata/cirugía , Proteína Proto-Oncogénica c-ets-2/genética , ARN/análisis , Análisis de Matrices Tisulares , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
8.
Breast Cancer Res Treat ; 170(2): 425-430, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29541976

RESUMEN

BACKGROUND/PURPOSE: Tumor heterogeneity is a now well-recognized phenomenon that can affect the classification, prognosis and treatment of human cancers. Heterogeneity is often described in primary breast cancers based upon histologic subtypes, hormone- and HER2-receptor status, and immunolabeling for various markers, which can be seen within a single tumor as mixed cellular populations, or as separate discrete foci. EXPERIMENTAL DESIGN/METHODS: Here, we present a case report of a patient's primary breast cancer that had two separate but adjacent histologic components, one that was estrogen receptor (ER) positive, and the other ER negative. Each component was subjected to whole exome sequencing and compared for gene identity to determine clonal origin. RESULTS: Using prior bioinformatic tools, we demonstrated that both the ER positive and negative components shared many variants, including passenger and driver alterations. Copy number variations also supported the two components were derived from a single common clone. CONCLUSIONS: These analyses strongly suggest that the two ER components of this patient's breast cancer were derived from the same clonal origin. Our results have implications for the evolution of breast cancers with mixed histologies, and how they might be best managed for optimal therapy.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Evolución Clonal/genética , Receptor alfa de Estrógeno/genética , Secuenciación del Exoma , Sitios de Carácter Cuantitativo , Adulto , Biomarcadores de Tumor , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Inmunohistoquímica
9.
Bioinformatics ; 33(20): 3158-3165, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028265

RESUMEN

MOTIVATION: Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. RESULTS: Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. AVAILABILITY AND IMPLEMENTATION: The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. CONTACT: favorov@sensi.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Regulación de la Expresión Génica , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Inmunoprecipitación de Cromatina/métodos , Epigenómica/métodos , Genoma Humano , Humanos
10.
Proc Natl Acad Sci U S A ; 110(29): E2706-13, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818630

RESUMEN

A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/genética , Melanocitos/metabolismo , Mutagénesis Insercional/métodos , Retroelementos/genética , Animales , Northern Blotting , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Genotipo , Células HeLa , Humanos , Melanocitos/citología , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Tetraciclina
11.
Proc Natl Acad Sci U S A ; 110(25): E2279-87, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23723351

RESUMEN

The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc(+)Int(-)) transposase. Our findings also suggest the position of a target DNA-transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc(+)Int(-) transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int(-) phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc(+)Int(-) transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase-target DNA interaction.


Asunto(s)
Elementos Transponibles de ADN/genética , Ingeniería Genética/métodos , Proteínas del Tejido Nervioso/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Técnicas de Transferencia de Gen , Genoma Humano/genética , Células HEK293 , Células HeLa , Humanos , Mamíferos , Datos de Secuencia Molecular , Mutagénesis Insercional/métodos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Dedos de Zinc/genética
12.
Genes Chromosomes Cancer ; 54(8): 472-481, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26031834

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by the inactivation of the tumor suppressor genes (TSGs), CDKN2A (P16) and SMAD4 (DPC4), commonly by homozygous deletions (HDs). Using a combination of high density single-nucleotide polymorphism (SNP) microarray and whole genome sequencing (WGS), we fine-mapped novel breakpoints surrounding deletions of CDKN2A and SMAD4 and characterized them by their underlying structural variants (SVs). Only one third of CDKN2A and SMAD4 deletions (6 of 18) were simple interstitial deletions, rather, the majority of deletions were caused by complex rearrangements, specifically, a translocation on one side of the TSG in combination with an inversion on the other side. We designate these as "TransFlip" mutations. Characteristics of TransFlip mutations are: (1) a propensity to target the TSGs CDKN2A and SMAD4 (P < 0.005), (2) not present in the germline of the examined samples, (3) non-recurrent breakpoints, (4) relatively small (47 bp to 3.4 kb) inversions, (5) inversions can be either telomeric or centromeric to the TSG, and (6) non-reciprocal, and non-recurrent translocations. TransFlip mutations are novel complex genomic rearrangements with unique breakpoint signatures in pancreatic cancer. We hypothesize that they are a common but poorly understood mechanism of TSG inactivation in human cancer. © 2015 Wiley Periodicals, Inc.

14.
Genome Res ; 22(4): 693-703, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22219510

RESUMEN

The Saccharomyces cerevisiae genome contains about 35 copies of dispersed retrotransposons called Ty1 elements. Ty1 elements target regions upstream of tRNA genes and other Pol III-transcribed genes when retrotransposing to new sites. We used deep sequencing of Ty1-flanking sequence amplicons to characterize Ty1 integration. Surprisingly, some insertions were found in mitochondrial DNA sequences, presumably reflecting insertion into mitochondrial DNA segments that had migrated to the nucleus. The overwhelming majority of insertions were associated with the 5' regions of Pol III transcribed genes; alignment of Ty1 insertion sites revealed a strong sequence motif centered on but extending beyond the target site duplication. A strong sequence-independent preference for nucleosomal integration sites was observed, in distinction to the preferences of the Hermes DNA transposon engineered to jump in yeast and the Tf1 retrotransposon of Schizosaccharomyces pombe, both of which prefer nucleosome free regions. Remarkably, an exquisitely specific relationship between Ty1 integration and nucleosomal position was revealed by alignment of hotspot Ty1 insertion position regions to peak nucleosome positions, geographically implicating nucleosomal DNA segments at specific positions on the nucleosome lateral surface as targets, near the "bottom" of the nucleosome. The specificity is observed in the three tRNA 5'-proximal nucleosomes, with insertion frequency dropping off sharply 5' of the tRNA gene. The sites are disposed asymmetrically on the nucleosome relative to its dyad axis, ruling out several simple molecular models for Ty1 targeting, and instead suggesting association with a dynamic or directional process such as nucleosome remodeling associated with these regions.


Asunto(s)
ADN de Hongos/genética , Mutagénesis Insercional , Nucleosomas/genética , ARN de Transferencia/genética , Retroelementos/genética , Sitios de Unión/genética , Análisis por Conglomerados , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN Mitocondrial/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
15.
Proc Natl Acad Sci U S A ; 109(21): E1377-86, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22556267

RESUMEN

The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular/genética , Análisis Mutacional de ADN/métodos , Genes Supresores de Tumor , Neoplasias Hepáticas/genética , Coactivador 2 del Receptor Nuclear/genética , Transposasas/genética , Alquilantes/toxicidad , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Dietilnitrosamina/toxicidad , Modelos Animales de Enfermedad , Femenino , Genes myc/genética , Células HEK293 , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Trasplante Heterólogo
16.
Genome Res ; 21(10): 1720-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21890680

RESUMEN

Translocations are a common class of chromosomal aberrations and can cause disease by physically disrupting genes or altering their regulatory environment. Some translocations, apparently balanced at the microscopic level, include deletions, duplications, insertions, or inversions at the molecular level. Traditionally, chromosomal rearrangements have been investigated with a conventional banded karyotype followed by arduous positional cloning projects. More recently, molecular cytogenetic approaches using fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH), or whole-genome SNP genotyping together with molecular methods such as inverse PCR and quantitative PCR have allowed more precise evaluation of the breakpoints. These methods suffer, however, from being experimentally intensive and time-consuming and of less than single base pair resolution. Here we describe targeted breakpoint capture followed by next-generation sequencing (TBCS) as a new approach to the general problem of determining the precise structural characterization of translocation breakpoints and related chromosomal aberrations. We tested this approach in three patients with complex chromosomal translocations: The first had craniofacial abnormalities and an apparently balanced t(2;3)(p15;q12) translocation; the second has cleidocranial dysplasia (OMIM 119600) associated with a t(2;6)(q22;p12.3) translocation and a breakpoint in RUNX2 on chromosome 6p; and the third has acampomelic campomelic dysplasia (OMIM 114290) associated with a t(5;17)(q23.2;q24) translocation, with a breakpoint upstream of SOX9 on chromosome 17q. Preliminary studies indicated complex rearrangements in patients 1 and 3 with a total of 10 predicted breakpoints in the three patients. By using TBCS, we quickly and precisely defined eight of the 10 breakpoints.


Asunto(s)
Cromosomas Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Translocación Genética , Adulto , Secuencia de Bases , Displasia Campomélica/genética , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Anomalías Craneofaciales/genética , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Factor de Transcripción SOX9/genética
17.
Circ Res ; 110(12): 1596-603, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22518031

RESUMEN

RATIONALE: Mitochondria are semiautonomous cellular organelles with their own genome, which not only supply energy but also participate in cell death pathways. MicroRNAs (miRNAs) are usually 19 to 25 nt long, noncoding RNAs, involved in posttranscriptional gene regulation by binding to the 3'-untranslated regions of target mRNA, which impact on diverse cellular processes. OBJECTIVE: To determine if nuclear miRNAs translocate into the mitochondria and regulate mitochondrial function with possible pathophysiological implications in cardiac myocytes. METHODS AND RESULTS: We find that miR-181c is encoded in the nucleus, assembled in the cytoplasm, and finally translocated into the mitochondria of cardiac myocytes. Immunoprecipitation of Argonaute 2 from the mitochondrial fraction indicates binding of cytochrome c oxidase subunit 1 (mt-COX1) mRNA from the mitochondrial genome with miR-181c. Also, a luciferase reporter construct shows that mi-181c binds to the 3'UTR of mt-COX1. To study whether miR-181c regulates mt-COX1, we overexpressed precursor miR-181c (or a scrambled sequence) in primary cultures of neonatal rat ventricular myocytes. Overexpression of miR-181c did not change mt-COX1 mRNA but significantly decreased mt-COX1 protein, suggesting that miR-181c is primarily a translational regulator of mt-COX1. In addition to altering mt-COX1, overexpression of miR-181c results in increased mt-COX2 mRNA and protein content, with an increase in both mitochondrial respiration and reactive oxygen species generation in neonatal rat ventricular myocytes. Thus, our data show for the first time that miR-181c can enter and target the mitochondrial genome, ultimately causing electron transport chain complex IV remodeling and mitochondrial dysfunction. CONCLUSIONS: Nuclear miR-181c translocates into the mitochondria and regulates mitochondrial genome expression. This unique observation may open a new dimension to our understanding of mitochondrial dynamics and the role of miRNA in mitochondrial dysfunction.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma Mitocondrial/genética , MicroARNs/fisiología , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/fisiología , Animales , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
18.
PLoS Genet ; 7(10): e1002329, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028667

RESUMEN

RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA-binding proteins Nrd1, Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived from in vivo protein-RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3' antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link efficiently to many expected non-coding RNAs but does cross-link to the 3' end of most pre-mRNA transcripts, suggesting an extensive role in mRNA 3' end formation and/or termination.


Asunto(s)
Cromatina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Bases , Sitios de Unión/genética , Mapeo Cromosómico , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Poli A/genética , Poli A/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Transcriptoma
19.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352348

RESUMEN

Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods: Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results: We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions: Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.

20.
Hum Mutat ; 34(11): 1481-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23946118

RESUMEN

Dyskeratosis congenita (DC) is a telomere-mediated syndrome defined by mucocutaneous features. The X-linked mode of inheritance accounts for half the cases, and is thought to predominantly manifest in childhood as bone marrow failure. We identified two male probands who presented in the fifth decade with idiopathic pulmonary fibrosis and cancer. Their pedigrees displayed consecutively affected generations. Five of six females (83%) manifested mucocutaneous features of DC, and two had wound-healing complications. No mutations in autosomal dominant telomere genes were present, but exome sequencing revealed novel variants in the X-chromosome DKC1 gene that predicted missense mutations in conserved residues, p.Thr49Ser and p.Pro409Arg. Variants segregated with the telomere phenotype, and affected females were heterozygotes, showing skewed X-inactivation. Telomerase RNA levels were compromised in cells from DKC1 mutation carriers, consistent with their pathogenic role. These findings indicate that females with heterozygous DKC1 mutations may be at increased risk for developing penetrant telomere phenotypes that, at times, may be associated with clinical morbidity.


Asunto(s)
Proteínas de Ciclo Celular/genética , Disqueratosis Congénita/genética , Heterocigoto , Mutación , Proteínas Nucleares/genética , Fenotipo , Telómero/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Disqueratosis Congénita/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas Nucleares/química , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA