Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 155(4): 044103, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34340387

RESUMEN

We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.

2.
J Chem Phys ; 155(8): 084801, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34470363

RESUMEN

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.

3.
Phys Chem Chem Phys ; 22(15): 8182-8192, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32249856

RESUMEN

In this paper, we investigate different non-orthogonal generalizations of the configuration interaction with single substitutions (CIS) method for the calculation of core-excited states. Fully non-orthogonal CIS (NOCIS) has been described previously for species with singlet and doublet ground states, and this paper reports the extension to molecules in their triplet ground state. In addition to NOCIS, we present a novel method, one-center NOCIS (1C-NOCIS), for open-shell molecules which is intermediate between NOCIS and the computationally less demanding static exchange approximation (STEX). We explore this hierarchy of spin-pure methods for core excitations of molecules with singlet, doublet, and triplet ground states. We conclude that, while NOCIS provides the best results and preserves the spatial symmetry of the wavefunction, 1C-NOCIS retains much of the accuracy of NOCIS at a dramatically reduced cost. For molecules with closed-shell ground states, STEX and 1C-NOCIS are identical.

4.
J Chem Phys ; 152(22): 224104, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32534540

RESUMEN

We discuss the theory and implementation of the finite temperature coupled cluster singles and doubles (FT-CCSD) method including the equations necessary for an efficient implementation of response properties. Numerical aspects of the method including the truncation of the orbital space and integration of the amplitude equations are tested on some simple systems, and we provide some guidelines for applying the method in practice. The method is then applied to the 1D Hubbard model, the uniform electron gas (UEG) at warm, dense conditions, and some simple materials. The performance of model systems at high temperatures is encouraging: for the one-dimensional Hubbard model, FT-CCSD provides a qualitatively accurate description of finite-temperature correlation effects even at U = 8, and it allows for the computation of systematically improvable exchange-correlation energies of the warm, dense UEG over a wide range of conditions. We highlight the obstacles that remain in using the method for realistic ab initio calculations on materials.

5.
J Chem Phys ; 153(22): 224112, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317297

RESUMEN

We describe a coupled cluster framework for coupled systems of electrons and harmonic phonons. Neutral and charged excitations are accessed via the equation-of-motion version of the theory. Benchmarks on the Hubbard-Holstein model allow us to assess the strengths and weaknesses of different coupled cluster approximations, which generally perform well for weak to moderate coupling. Finally, we report progress toward an implementation for ab initio calculations on solids and present some preliminary results on finite-size models of diamond with a linear electron-phonon coupling. We also report the implementation of electron-phonon coupling matrix elements from crystalline Gaussian type orbitals within the PySCF program package.

6.
J Chem Phys ; 149(4): 044116, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068195

RESUMEN

In this paper, we present the non-orthogonal configuration interaction singles (NOCIS) method for calculating core-excited states of closed-shell molecules. NOCIS is a black-box variant of NOCI, which uses A different core-ionized determinants for a molecule with A atoms of a given element to form single substitutions. NOCIS is a variational, spin-pure, size-consistent ab initio method that dramatically improves on standard CIS by capturing essential orbital relaxation effects, in addition to essential configuration interaction. We apply it to the calculation of core-excitations for several smaller molecules and demonstrate that it performs competitively with other Hartree-Fock and DFT-based methods. We also benchmark it in several basis sets.

7.
J Chem Phys ; 146(4): 044112, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147521

RESUMEN

The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the Πg2 shape resonance of N2- which has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.

8.
J Chem Phys ; 146(23): 234107, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28641431

RESUMEN

The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N2-, CO-, CO2-, and CH2O-. Analytic continuation of complex 𝜃-trajectories is used to compute Siegert energies, and the 𝜃-trajectories of energy differences are found to yield more consistent results than those of total energies. The ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.

9.
J Chem Phys ; 146(4): 044111, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147535

RESUMEN

Simulations of the n = 2 absorption spectra of HeN (N = 70, 150, 231, 300) clusters are reported, with nuclear configurations sampled by path integral molecular dynamics. The electronic structure is treated by a new approach, ALMO-CIS+CT, which is a formulation of configuration interaction singles (CIS) based on absolutely localized molecular orbitals (ALMOs). The method generalizes the previously reported ALMO-CIS model [K. D. Closser et al. J. Chem. Theory Comput. 11, 5791 (2015)] to include spatially localized charge transfer (CT) effects. It is designed to recover large numbers of excited states in atomic and molecular clusters, such as the entire n = 2 Rydberg band in helium clusters. ALMO-CIS+CT is shown to recover most of the error caused by neglecting charge transfer in ALMO-CIS and has comparable accuracy to standard CIS for helium clusters. For the n = 2 band, CT stabilizes states towards the blue edge by up to 0.5 eV. ALMO-CIS+CT retains the formal cubic scaling of ALMO-CIS with respect to system size. With improvements to the implementation over that originally reported for ALMO-CIS, ALMO-CIS+CT is able to treat helium clusters with hundreds of atoms using modest computing resources. A detailed simulation of the absorption spectra associated with the 2s and 2p bands of helium clusters up to 300 atoms is reported, using path integral molecular dynamics with a spherical boundary condition to generate atomic configurations at 3 K. The main features of experimentally reported fluorescence excitation spectra for helium clusters are reproduced.

11.
J Chem Phys ; 143(7): 074103, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26298111

RESUMEN

This work describes the implementation and applications of non-Hermitian self-consistent field (NH-SCF) theory with complex basis functions for the ab initio computation of positions and widths of shape resonances in molecules. We utilize both the restricted open-shell and the previously unexplored spin-unrestricted variants to compute Siegert energies of several anionic shape resonances in small diatomic and polyatomic molecules including carbon tetrafluoride which has been the subject of several recent experimental studies. The computation of general molecular properties from a non-Hermitian wavefunction is discussed, and a density-based analysis is applied to the (2)B1 shape resonance in formaldehyde. Spin-unrestricted NH-SCF is used to compute a complex potential energy surface for the carbon monoxide anion which correctly describes dissociation.

12.
J Chem Phys ; 142(5): 054103, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25662632

RESUMEN

The method of complex basis functions for computing positions and widths of molecular resonances is revisited. An open-ended and efficient implementation is described. The basis set requirements of the complex basis are investigated within the computationally inexpensive static-exchange approximation, and the results of this investigation lead to a hierarchy of basis sets for complex basis function calculations on small molecules. These basis sets are then applied in static-exchange calculations on some larger molecules with multiple low energy shape resonances: carbon tetrafluoride, benzene, pyridine, pyrimidine, pyrazine, and s-triazine. The results indicate that more sophisticated methods using complex basis functions are worth pursuing in the search for accurate and computationally feasible methods for computing resonance energies in molecular systems.

13.
J Chem Theory Comput ; 20(9): 3719-3728, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38661337

RESUMEN

We describe a matrix product state (MPS) extension for the Fermionic Quantum Emulator (FQE) software library. We discuss the theory behind symmetry-adapted MPSs for approximating many-body wave functions of spin-1/2 Fermions, and we present an open-source, MPS-enabled implementation of the FQE interface (MPS-FQE). The software uses the open-source pyblock3 and block2 libraries for most elementary tensor operations, and it can largely be used as a drop-in replacement for FQE that allows for more efficient but approximate emulation of larger Fermionic circuits. Finally, we show several applications relevant to both near-term and fault-tolerant quantum algorithms where approximate emulation of larger systems is expected to be useful: characterization of state preparation strategies for quantum phase estimation, the testing of different variational quantum eigensolver ansätze, the numerical evaluation of Trotter errors, and the simulation of general quantum dynamics problems. In all these examples, approximate emulation with MPS-FQE allows us to treat systems that are significantly larger than those accessible with a full statevector emulator.

15.
Nat Comput Sci ; 3(4): 328-333, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177936

RESUMEN

Obtaining the free energy of large molecules from quantum mechanical energy functions is a long-standing challenge. We describe a method that allows us to estimate, at the quantum mechanical level, the harmonic contributions to the thermodynamics of molecular systems of large size, with modest cost. Using this approach, we compute the vibrational thermodynamics of a series of diamond nanocrystals, and show that the error per atom decreases with system size in the limit of large systems. We further show that we can obtain the vibrational contributions to the binding free energies of prototypical protein-ligand complexes where exact computation is too expensive to be practical. Our work raises the possibility of routine quantum mechanical estimates of thermodynamic quantities in complex systems.


Asunto(s)
Nanoestructuras , Vibración , Entropía , Termodinámica
16.
J Chem Theory Comput ; 18(12): 7306-7320, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36417710

RESUMEN

In this article, we present an algorithm to efficiently evaluate the exchange matrix in periodic systems when a Gaussian basis set with pseudopotentials is used. The usual algorithm for evaluating exchange matrix scales cubically with the system size because one has to perform O(N2) fast Fourier transform (FFT). Here, we introduce an algorithm that retains the cubic scaling but reduces the prefactor significantly by eliminating the need to do FFTs during each exchange build. This is accomplished by representing the products of Gaussian basis function using a linear combination of an auxiliary basis the number of which scales linearly with the size of the system. We store the potential due to these auxiliary functions in memory, which allows us to obtain the exchange matrix without the need to do FFT, albeit at the cost of additional memory requirement. Although the basic idea of using auxiliary functions is not new, our algorithm is cheaper due to a combination of three ingredients: (a) we use a robust pseudospectral method that allows us to use a relatively small number of auxiliary basis to obtain high accuracy; (b) we use occ-RI exchange, which eliminates the need to construct the full exchange matrix; and (c) we use the (interpolative separable density fitting) ISDF algorithm to construct these auxiliary basis sets that are used in the robust pseudospectral method. The resulting algorithm is accurate, and we note that the error in the final energy decreases exponentially rapidly with the number of auxiliary functions.

17.
J Chem Theory Comput ; 15(11): 6137-6153, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600075

RESUMEN

We leverage the Keldysh formalism to extend our implementation of finite temperature coupled cluster theory [J. Chem. Theory Comput. 2018, 14, 5690-5700] to thermal systems that have been driven out of equilibrium. The resulting Keldysh coupled cluster theory is discussed in detail. We describe the implementation of the equations necessary to perform Keldysh coupled cluster singles and doubles calculations of finite-temperature dynamics, and we apply the method to some simple systems including a Hubbard model with a Peierls phase and an ab initio model of warm-dense silicon subject to an ultrafast XUV pulse.

18.
J Chem Theory Comput ; 15(5): 2966-2973, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31017781

RESUMEN

In this paper, we present an open-shell extension of the non-orthogonal configuration interaction singles (NOCIS) method for the calculation of core-excited states, intended for peak assignment in XAS spectra of doublet radicals. This extension requires the consideration of additional configurations due to the singly occupied open-shell orbital, and the addition of essential orbital relaxation effects is found to provide a significant improvement on standard CIS, while maintaining the desirable properties of spin purity, variationality, and size consistency. We apply this method to the calculation of core excitations for several open-shell molecules and demonstrate that it performs competitively with other available methods, despite a lack of dynamic correlation. In particular, relative to CVS-ADC(2)-x, RMS error is reduced by a factor of 6 over usual orthogonal CIS and is comparable to time-dependent density functional theory with the best short-range corrected functionals.

19.
J Chem Theory Comput ; 14(11): 5690-5700, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30260642

RESUMEN

We present a time-dependent formulation of coupled cluster theory. This theory allows for direct computation of the free energy of quantum systems at finite temperature by imaginary time integration and is closely related to the thermal cluster cumulant theory of Mukherjee and co-workers [ Chem. Phys. Lett. 1992 , 192 , 55 -61 ; Phys. Rev. E 1993 , 48 , 3373 -3389 ; Chem. Phys. Lett. 2001 , 335 , 281 -288 ; Chem. Phys. Lett. 2002 , 352 , 63 -69 ; Int. J. Mod. Phys. B 2003 , 17 , 5367 -5377 ]. Our derivation of the finite-temperature theory highlights connections to perturbation theory and to zero-temperature coupled cluster theory. We show explicitly how the finite-temperature coupled cluster singles and doubles amplitude equations can be derived in analogy with the zero-temperature theory and how response properties can be efficiently computed using a variational Lagrangian. We discuss the implementation for realistic systems and showcase the potential utility of the method with calculations of the exchange correlation energy of the uniform electron gas under warm dense matter conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA