Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 76(6): 1059-1066, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36310531

RESUMEN

BACKGROUND: Early and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as noninvasive biomarkers of infection to support clinical diagnosis. METHODS: In this study, we investigated the diagnostic potential of in vitro-confirmed mVOCs in the exhaled breath of patients under mechanical ventilation from the BreathDx study. Samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. RESULTS: Pathogens from bronchoalveolar lavage (BAL) cultures were identified in 45 of 89 patients and Staphylococcus aureus was the most commonly identified pathogen (n = 15). Of 19 mVOCs detected in the in vitro culture headspace of 4 common respiratory pathogens (S. aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of 2 mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal: P < .01, area under the receiver operating characteristic curve [AUROC] = 0.81-0.87; and 3-methylbutanoic acid: P = .01, AUROC = 0.79-0.80). In addition, bacteria identified from BAL cultures that are known to metabolize tryptophan (E. coli, Klebsiella oxytoca, and Haemophilus influenzae) were grouped and found to produce higher concentrations of indole compared to breath samples with culture-negative (P = .034) and other pathogen-positive (P = .049) samples. CONCLUSIONS: This study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multicenter clinical studies.


Asunto(s)
Neumonía , Infecciones Estafilocócicas , Compuestos Orgánicos Volátiles , Humanos , Respiración Artificial , Staphylococcus aureus , Escherichia coli , Proyectos Piloto , Pulmón , Bacterias , Infecciones Estafilocócicas/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Biomarcadores/análisis
2.
Thorax ; 77(1): 79-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34088787

RESUMEN

Patients suspected of ventilator-associated lower respiratory tract infections (VA-LRTIs) commonly receive broad-spectrum antimicrobial therapy unnecessarily. We tested whether exhaled breath analysis can discriminate between patients suspected of VA-LRTI with confirmed infection, from patients with negative cultures. Breath from 108 patients suspected of VA-LRTI was analysed by gas chromatography-mass spectrometry. The breath test had a sensitivity of 98% at a specificity of 49%, confirmed with a second analytical method. The breath test had a negative predictive value of 96% and excluded pneumonia in half of the patients with negative cultures. Trial registration number: UKCRN ID number 19086, registered May 2015.


Asunto(s)
Neumonía Asociada al Ventilador , Infecciones del Sistema Respiratorio , Pruebas Respiratorias , Pruebas Diagnósticas de Rutina , Espiración , Humanos , Infecciones del Sistema Respiratorio/diagnóstico , Ventiladores Mecánicos
3.
Analyst ; 146(1): 222-231, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33103170

RESUMEN

Exhaled breath analysis is a promising new diagnostic tool, but currently no standardised method for sampling is available in mechanically ventilated patients. We compared two breath sampling methods, first using an artificial ventilator circuit, then in "real life" in mechanically ventilated patients on the intensive care unit. In the laboratory circuit, a 24-component synthetic-breath volatile organic compound (VOC) mixture was injected into the system as air was sampled: (A) through a port on the exhalation limb of the circuit and (B) through a closed endo-bronchial suction catheter. Sorbent tubes were used to collect samples for analysis by thermal desorption-gas chromatography-mass spectrometry. Realistic mechanical ventilation rates and breath pressure-volume loops were established and method detection limits (MDLs) were calculated for all VOCs. Higher yields of VOCs were retrieved using the closed suction catheter; however, for several VOCs MDLs were compromised due to the background signal associated with plastic and rubber components in the catheters. Different brands of suction catheter were compared. Exhaled VOC data from 40 patient samples collected at two sites were then used to calculate the proportion of data analysed above the MDL. The relative performance of the two methods differed depending on the VOC under study and both methods showed sensitivity towards different exhaled VOCs. Furthermore, method performance differed depending on recruitment site, as the centres were equipped with different brands of respiratory equipment, an important consideration for the design of multicentre studies investigating exhaled VOCs in mechanically ventilated patients.


Asunto(s)
Compuestos Orgánicos Volátiles , Pruebas Respiratorias , Espiración , Cromatografía de Gases y Espectrometría de Masas , Humanos , Respiración Artificial , Compuestos Orgánicos Volátiles/análisis
4.
Analyst ; 143(17): 4155-4162, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30069568

RESUMEN

Pulmonary aspergillosis can cause serious complications in people with a suppressed immune system. Volatile metabolites emitted by Aspergillus spp. have shown promise for early detection of pathogenicity. However, volatile profiles require further research, as effective headspace analysis methods are required for extended chemical coverage of the volatome; in terms of both very volatile and semi-volatile compounds. In this study, we describe a novel adaptable sampling method in which fungal headspace samples can be sampled continuously throughout a defined time period using both active (pumped) and passive (diffusive) methods, with the capability for samples to be stored for later off-line analysis. For this method we utilise thermal desorption-gas chromatography-mass spectrometry to generate volatile metabolic profiles using Aspergillus fumigatus as the model organism. Several known fungal-specific volatiles associated with secondary metabolite biosynthesis (including α-pinene, camphene, limonene, and several sesquiterpenes) were identified. A comparison between the wild-type A. fumigatus with a phosphopantetheinyl transferase null mutant strain (ΔpptA) that is compromised in secondary metabolite synthesis, revealed reduced production of sesquiterpenes. We also showed the lack of terpene compounds production during the early growth phase, whilst pyrazines were identified in both early and late growth phases. We have demonstrated that the fungal volatome is dynamic and it is therefore critically necessary to sample the headspace across several time periods using a combination of active and passive sampling techniques to analyse and understand this dynamism.


Asunto(s)
Aspergillus fumigatus/metabolismo , Metabolómica/métodos , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas
6.
Environ Sci Technol ; 48(15): 8891-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24978099

RESUMEN

The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.


Asunto(s)
Sedimentos Geológicos/química , Hidrocarburos/análisis , Gas Natural/análisis , Yacimiento de Petróleo y Gas/química , Fenómenos Químicos , Inglaterra , Monitoreo del Ambiente/métodos
7.
Anal Bioanal Chem ; 406(22): 5283-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24948096

RESUMEN

Biomass burning is becoming an increasing contributor to atmospheric particulate matter, and concern is increasing over the detrimental health effects of inhaling such particles. Levoglucosan and related monosaccharide anhydrides (MAs) can be used as tracers of the contribution of wood burning to total particulate matter. An improved gas chromatography-mass spectrometry method to quantify atmospheric levels of MAs has been developed and, for the first-time, fully validated. The method uses an optimised, low-volume methanol extraction, derivitisation by trimethylsilylation and analysis with high-throughput gas chromatography-mass spectrometry (GC-MS). Recovery of approximately 90 % for levoglucosan, and 70 % for the isomers galactosan and mannosan, was achieved using spiked blank filters estimates. The method was extensively validated to ensure that the precision of the method over five experimental replicates on five repeat experimental occasions was within 15 % for low, mid and high concentrations and accuracy between 85 and 115 %. The lower limit of quantification (LLOQ) was 0.21 and 1.05 ng m(-3) for levoglucosan and galactosan/mannosan, respectively, where the assay satisfied precisions of ≤20 % and accuracies 80-120 %. The limit of detection (LOD) for all analytes was 0.105 ng m(-3). The stability of the MAs, once deposited on aerosol filters, was high over the short term (4 weeks) at room temperature and over longer periods (3 months) when stored at -20 °C. The method was applied to determine atmospheric levels of MAs at an urban background site in Leicester (UK) for a month. Mean concentrations of levoglucosan over the month of May were 21.4 ± 18.3 ng m(-3), 7.5 ± 6.1 ng m(-3) mannosan and 1.8 ± 1.3 ng m(-3) galactosan.


Asunto(s)
Contaminantes Atmosféricos/análisis , Anhídridos/análisis , Glucosa/análogos & derivados , Monosacáridos/análisis , Humo/análisis , Madera , Aerosoles/análisis , Filtros de Aire , Biomasa , Carbono/química , Monitoreo del Ambiente/métodos , Filtración , Galactosa/análogos & derivados , Galactosa/análisis , Cromatografía de Gases y Espectrometría de Masas , Glucosa/análisis , Manosa/análogos & derivados , Manosa/análisis , Material Particulado/análisis , Reproducibilidad de los Resultados , Temperatura , Reino Unido
8.
Anal Chem ; 84(12): 5387-91, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22612412

RESUMEN

A drift tube capable of simultaneously functioning as an ion funnel is demonstrated in proton transfer reaction mass spectrometry (PTR-MS) for the first time. The ion funnel enables a much higher proportion of ions to exit the drift tube and enter the mass spectrometer than would otherwise be the case. An increase in the detection sensitivity for volatile organic compounds of between 1 and 2 orders of magnitude is delivered, as demonstrated using several compounds. Other aspects of analytical performance explored in this study include the effective E/N (ratio of electric field to number density of the gas) and dynamic range over which the drift tube is operated. The dual-purpose drift tube/ion funnel can be coupled to various types of mass spectrometers to increase the detection sensitivity and may therefore offer considerable benefits in PTR-MS work.

9.
Sci Rep ; 11(1): 21949, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753981

RESUMEN

Inflammation is strongly implicated in both injury and repair processes occurring after stroke. In this exploratory study we assessed the feasibility of repeated sampling of exhaled volatile organic compounds and performed an untargeted metabolomic analysis of plasma collected at multiple time periods after stroke. Metabolic profiles were compared with the time course of the inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). Serial breath sampling was well-tolerated by all patients and the measurement appears feasible in this group. We found that exhaled decanal tracks CRP and IL-6 levels post-stroke and correlates with several metabolic pathways associated with a post-stroke inflammatory response. This suggests that measurement of breath and blood metabolites could facilitate development of novel therapeutic and diagnostic strategies. Results are discussed in relation to the utility of breath analysis in stroke care, such as in monitoring recovery and complications including stroke associated infection.


Asunto(s)
Pruebas Respiratorias/métodos , Inflamación/metabolismo , Accidente Cerebrovascular/metabolismo , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Espiración , Estudios de Factibilidad , Femenino , Humanos , Inflamación/sangre , Inflamación/complicaciones , Interleucina-6/sangre , Masculino , Metabolómica , Persona de Mediana Edad , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/complicaciones
10.
Environ Sci Technol ; 44(16): 6269-74, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20704225

RESUMEN

The hydroxyl radical (OH) plays a key role in determining indoor air quality. However, its highly reactive nature and low concentration indoors impede direct analysis. This paper describes the techniques used to indirectly quantify indoor OH, including the development of a new method based on the instantaneous release of chemical tracers into the air. This method was used to detect ambient OH in two indoor seminar rooms following tracer detection by gas chromatography-mass spectrometry (GCMS). The results from these tests add to the small number of experiments that have measured indoor OH which are discussed with regard to future directions within air quality research.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Radical Hidroxilo/análisis , Butadienos/química , Monóxido de Carbono/análisis , Hemiterpenos/química , Humedad , Ozono/análisis , Pentanos/química , Temperatura , Factores de Tiempo , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA