Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Org Chem ; 89(3): 1397-1406, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214497

RESUMEN

Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.

2.
Chem Soc Rev ; 52(18): 6254-6269, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37599586

RESUMEN

Hydrogen bonding interactions are ubiquitous across the biochemical and chemical sciences, and are of particular interest to supramolecular chemists. They have been used to assemble hydrogen bonded polymers, cages and frameworks, and are the functional motif in many host-guest systems. Single crystal X-ray diffraction studies are often used as a key support for proposed structures, although this presents challenges as hydrogen atoms interact only weakly with X-rays. In this Tutorial Review, we discuss the information that can be gleaned about hydrogen bonding interactions through crystallographic experiments, key limitations of the data, and emerging techniques to overcome these limitations.

3.
J Org Chem ; 88(13): 8310-8315, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37339270

RESUMEN

Pillar[6]arenes are established as crucial building blocks in supramolecular chemistry; however, they can be difficult to synthesize, particularly in the absence of large solubilizing substituents. In this work, we explore variability in literature syntheses of pillar[6]arene derivatives and suggest that the outcome is dependent on whether oligomeric intermediates stay in solution long enough for the thermodynamically favorable macrocyclization to occur. We demonstrate that in a previously capricious BF3·OEt2-mediated procedure, ≤5 mol % of a Brønsted acid can slow down the reaction to favor macrocycle formation.

4.
Angew Chem Int Ed Engl ; 62(8): e202212962, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36658738

RESUMEN

In a recent Research Article, Ben and co-workers reported a hydrogen-bonded framework prepared from a 4+ tetra-amidinium component and a 4- tetra-sulfonate component, termed CPOS-6. They showed that CPOS-6 could reversibly adsorb and desorb water over a narrow humidity window, and that this material offered potential for applications in atmospheric water harvesting. This conclusion was supported by experiments that showed the material was stable over 50 adsorption/desorption cycles and that the kinetics of these cycles were very rapid. In this Correspondence we present additional structural data regarding this framework in both its hydrated and dehydrated states and thus discern the mechanism of water binding. These data do not disagree with Ben and co-workers' findings: rather they emphasise how remarkable the cyclability and rapid kinetics of adsorption/desorption are, as these processes involve a complete crystal-to-crystal rearrangement of the framework.

5.
Angew Chem Int Ed Engl ; 62(12): e202218360, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36702770

RESUMEN

A simple, readily prepared biphenyl bis-amidinium compound (1⋅Cl2 ) is able to selectively precipitate sulfate from water. The precipitant is effective at concentrations as low as 1 mM and shows complete selectivity against monovalent anions, and high selectivity even against CO3 2- and HPO4 2- . It is highly effective (>90 % sulfate removed) in both seawater and highly acidic conditions relevant to mining waste-streams. X-ray crystallography reveals that 1⋅SO4 forms a tightly packed, anhydrous, structure where each sulfate anion receives eight hydrogen bonds from amidinium N-H hydrogen bond donors.

6.
Chemistry ; 28(51): e202200958, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35863888

RESUMEN

A new alkyne-based hydrocarbon cage was synthesized in high overall yield using alkyne-alkyne coupling in the cage forming step. The cage is porous and displays a moderately high BET surface area (546 m2 g-1 ). The cage loses crystallinity on activation and thus is porous in its amorphous form, while very similar cages have been either non-porous, or retained crystallinity on activation. Reaction of the cage with Co2 (CO)8 results in exhaustive metalation of its 12 alkyne groups to give the Co24 (CO)72 adduct of the cage in good yield.

7.
Chemistry ; 28(28): e202200389, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293643

RESUMEN

We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3 OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.


Asunto(s)
Rotaxanos , Aniones/química , Cloruros/química , Halógenos , Enlace de Hidrógeno , Modelos Moleculares , Rotaxanos/química
8.
Chemistry ; 28(57): e202201929, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35768334

RESUMEN

As hydrogen bonded frameworks are held together by relatively weak interactions, they often form several different frameworks under slightly different synthesis conditions and respond dynamically to stimuli such as heat and vacuum. However, these dynamic restructuring processes are often poorly understood. In this work, three isoreticular hydrogen bonded organic frameworks assembled through charge-assisted amidinium⋅⋅⋅carboxylate hydrogen bonds (1C/C , 1Si/C and 1Si/Si ) are studied. Three distinct phases for 1C/C and four for 1Si/C and 1Si/Si are fully structurally characterized. The transitions between these phases involve extreme yet recoverable molecular-level framework reorganization. It is demonstrated that these transformations are related to water content and can be controlled by humidity, and that the non-porous anhydrous phase of 1C/C shows reversible water sorption through single crystal to crystal restructuring. This mechanistic insight opens the way for the future use of the inherent dynamism present in hydrogen bonded frameworks.

9.
Phys Chem Chem Phys ; 24(18): 10784-10797, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35475452

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are a promising class of porous crystalline materials for gas sorption and gas separation technologies that can be constructed under mild synthetic conditions. In forming three-dimensional networks of flexible hydrogen bonds between donor/acceptor subunits, these materials have displayed high stability at elevated temperature and under vacuum. Although the structural properties of HOFs are commonly characterized by diffraction techniques, new complimentary methods to elucidate phase behaviour and host-guest interactions at the molecular level are sought, particularly those that can be applied under changing physical conditions or solvent environment. To this end, this study has applied synchrotron far-IR and mid-IR spectroscopy to probe the properties of two known and one new HOF system assembled from tetrahedral amidinium and carboxylate building blocks. All three frameworks produce feature-rich and resolved infrared profiles from 30 to 4000 cm-1 that provide information on hydrogen-bonded water solvent networks and the HOF channel topography via lattice and torsional bands. Comparison of experimental peaks to frequencies and atomic displacements (eigenvectors) predicted by high-level periodic DFT calculations have allowed for the assignment of vibrational modes associated with the aforementioned physicochemical properties. Now compiled, the specific vibrational modes identified as common to charge-assisted hydrogen-bonding motifs, as well as low frequency lattice and torsional bands attributed to HOF pore morphology and water-of-hydration networks, can act as diagnostic features in future spectroscopic investigations of HOF properties, such as those toward the design and tuning of host-guest properties for targeted applications.

10.
Chemistry ; 27(5): 1768-1776, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32924234

RESUMEN

Despite their apparent similarity, framework materials based on tetraphenylmethane and tetraphenylsilane building blocks often have quite different structures and topologies. Herein, we describe a new silicon tetraamidinium compound and use it to prepare crystalline hydrogen bonded frameworks with carboxylate anions in water. The silicon-containing frameworks are compared with those prepared from the analogous carbon tetraamidinium: when biphenyldicarboxylate or tetrakis(4-carboxyphenyl)methane anions were used similar channel-containing networks are observed for both the silicon and carbon tetraamidinium. When terephthalate or bicarbonate anions were used, different products form. Insights into possible reasons for the different products are provided by a survey of the Cambridge Structural Database and quantum chemical calculations, both of which indicate that, contrary to expectations, tetraphenylsilane derivatives have less geometrical flexibility than tetraphenylmethane derivatives, that is, they are less able to distort away from ideal tetrahedral bond angles.

11.
J Org Chem ; 86(19): 13762-13767, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34549965

RESUMEN

Benzamidinium compounds have found widespread use in both medicinal and supramolecular chemistry. In this work, we show that benzamidiniums hydrolyze at room temperature in aqueous base to give the corresponding primary amide. This reaction has a half-life of 300 days for unsubstituted benzamidinium at pH 9, but is relatively rapid at higher pH's (e.g., t1/2 = 6 days at pH 11 and 15 h at pH 13). Quantum chemistry combined with first-principles kinetic modeling can reproduce these trends and explain them in terms of the dominant pathway being initiated by attack of HO- on benzamidine. Incorporation of the amidinium motif into a hydrogen bonded framework offers a substantial protective effect against hydrolysis.


Asunto(s)
Benzamidinas , Agua , Concentración de Iones de Hidrógeno , Hidrólisis , Temperatura
12.
Org Biomol Chem ; 19(12): 2794-2803, 2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33720236

RESUMEN

Hydroxypyridinium and hydroxyquinolinium compounds containing acidic O-H groups attached to a cationic aromatic scaffold were synthesized, i.e. N-methyl-3-hydroxypyridinium (1+) and N-methyl-8-hydroxyquinolinium (2+). These very simple compounds are capable of binding to chloride very strongly in CD3CN and with moderate strength in 9 : 1 CD3CN : D2O. Comparison with known association constants reveals that 1+ and 2+ bind chloride in CD3CN or CD3CN : D2O with comparable affinities to receptors containing significantly more hydrogen bond donors and/or higher positive charges. Crystal structures of both compounds with coordinating anions were obtained, and feature short O-Hanion hydrogen bonds. A receptor containing two hydroxyquinolinium groups was also prepared. While the low solubility of this compound caused difficulties, we were able to demonstrate chloride binding in a competitive 1 : 1 CD3CN : CD3OD solvent mixture. Addition of sulfate to this compound results in the formation of a crystallographically-characterised solid state anion coordination polymer.

13.
Chem Soc Rev ; 49(22): 7893-7906, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32677649

RESUMEN

Based on Coulomb's Law alone, electrostatic repulsion between two anions is expected to prevent their dimerization. Contrary to that idea, this Tutorial Review will present evidence showing that anion-anion dimers of protic hydroxyanions can form readily, and describe conditions that facilitate their formation. From X-ray crystal structures, we learn that hydroxyanions dimerize and oligomerize by overcoming long-range electrostatic opposition. Common examples are hydroxyanions of phosphate, sulfate, and carbonate, often in partnership with charged and neutral receptors. Short-range hydrogen bonds between anionic donors and acceptors are defined as anti-electrostatic hydrogen bonds (AEHBs) with insight from theoretical studies. While anion dimers are difficult to identify unequivocally in solution, these solution dimers have recently been definitively identified. The development of the supramolecular chemistry of anion-anion dimers has led to applications in hierarchical assemblies, such as supramolecular polymers and hydrogen bonded organic frameworks.

14.
Chem Soc Rev ; 48(9): 2596-2614, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30860210

RESUMEN

This review covers significant advances in the use of O-H groups in anion coordination chemistry. The review focuses on the use of these groups in synthetic anion receptors, as well as more recent developments in transport, self-assembly and catalysis.

15.
J Am Chem Soc ; 141(36): 14298-14305, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31426638

RESUMEN

Protection of biological assemblies is critical to applications in biotechnology, increasing the durability of enzymes in biocatalysis or potentially stabilizing biotherapeutics during transport and use. Here we show that a porous hydrogen-bonded organic framework (HOF) constructed from water-soluble tetra-amidinium (1·Cl4) and tetracarboxylate (2) building blocks can encapsulate and stabilize biomolecules to elevated temperature, proteolytic and denaturing agents, and extend the operable pH range for catalase activity. The HOF, which readily retains water within its framework structure, can also protect and retain the activity of enzymes such as alcohol oxidase, that are inactive when encapsulated within zeolitic imidazolate framework (ZIF) materials. Such HOF coatings could provide valid alternative materials to ZIFs: they are metal free, possess larger pore apertures, and are stable over a wider, more biologically relevant pH range.


Asunto(s)
Oxidorreductasas de Alcohol/química , Amidas/química , Ácidos Carboxílicos/química , Oxidorreductasas de Alcohol/metabolismo , Amidas/metabolismo , Ácidos Carboxílicos/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Imidazoles/química , Imidazoles/metabolismo , Conformación Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie , Agua/química , Zeolitas/química , Zeolitas/metabolismo
16.
Chemistry ; 25(42): 10006-10012, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31267583

RESUMEN

While numerous hydrogen-bonded organic frameworks (HOFs) have been reported, typically these cannot be prepared predictably or in a modular fashion. In this work, we report a family of nine diamondoid crystalline porous frameworks assembled via hydrogen bonding between poly-amidinium and poly-carboxylate tectons. The frameworks are prepared at room temperature in either water or water/alcohol mixtures. Importantly, both the cationic and anionic components can be varied and additional functionality can be incorporated into the frameworks, which show good stability including to prolonged heating in DMSO or water.

17.
Chemistry ; 24(41): 10434-10442, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29668116

RESUMEN

A new bis-triazacyclononane tris-pyridyl N9 -azacryptand ligand is prepared via a convenient one-pot [2+3] condensation reaction between triazacyclononane and 2,6-bis(bromomethyl) pyridine in the presence of M2 CO3 (M=Li, Na, K). The proton, lithium, sodium, potassium and lead(II) complexes of the ligand are characterised in the solid state. Preliminary solution-phase competition experiments indicate that the cryptand ligand preferentially binds lead(II) in the presence of sodium, calcium, potassium and zinc cations in methanol solution.

18.
Inorg Chem ; 57(11): 6266-6282, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29767514

RESUMEN

Two isomeric pyrimidine-based Rdpt-type triazole ligands were made: 4-(4-methylphenyl)-3-(2-pyrimidyl)-5-phenyl-4 H-1,2,4-triazole (L2pyrimidine) and 4-(4-methylphenyl)-3-(4-pyrimidyl)-5-phenyl-4 H-1,2,4-triazole (L4pyrimidine). When reacted with [FeII(pyridine)4(NCE)2], where E = S, Se, or BH3, two families of mononuclear iron(II) complexes are obtained, including six solvatomorphs, giving a total of 12 compounds: [FeII(L2pyrimidine)2(NCS)2] (1), [FeII(L2pyrimidine)2(NCSe)2] (2), 2·1.5H2O, [FeII(L2pyrimidine)2(NCBH3)2]·2CHCl3 (3·2CHCl3), 3 and 3·2H2O, [FeII(L4pyrimidine)2(NCS)2] (4), 4·H2O, [FeII(L4pyrimidine)2(NCSe)2] (5), 5·2CH3OH, 5·1.5H2O, and [FeII(L4pyrimidine)2(NCBH3)2]·2.5H2O (6·2.5H2O). Single-crystal X-ray diffraction reveals that the N6-coordinated iron(II) centers in 1, 2, 3·2CHCl3, 4, 5, and 5·2CH3OH have two bidentate triazole ligands equatorially bound and two axial NCE co-ligands trans-coordinated. All structures are high spin (HS) at 100 K, except 3·2CHCl3, which is low spin (LS). Solid-state magnetic measurements show that only 3·2CHCl3 ( T1/2 above 400 K) and 5·1.5H2O ( T1/2 = 110 K) undergo spin crossover (SCO); the others remain HS at 300-50 K. When 3·2CHCl3 is heated at 400 K it desorbs CHCl3 becoming 3, which remains HS at 400-50 K. UV-Vis studies in CH2Cl2, CHCl3, (CH3)2CO, CH3CN, and CH3NO2 solutions for the BH3 analogues 3 and 6 led to a 6:1 ratio of L npyrimidine/Fe(II) being employed for the solution studies. These revealed SCO activity in all five solvents, with T1/2 values for the 2-pyrimidine complex (247-396 K) that were consistently higher than for the 4-pyrimidine complex (216-367 K), regardless of solvent choice, consistent with the 2-pyrimidine ring providing a stronger ligand field than the 4-pyrimidine ring. Strong correlations of solvent polarity index with the T1/2 values in those solvents are observed for each complex, enabling predictable T1/2 tuning by up to 150 K. While this correlation is tantalizing, here it may also be reflecting solvent-dependent speciation-so future tests of this concept should employ more stable complexes. Differences between solid-state (ligand field; crystal packing; solvent content) and solution (ligand field; solvation; speciation) effects on SCO are highlighted.

19.
Org Biomol Chem ; 15(39): 8418-8424, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28952647

RESUMEN

Five new tris(N-salicylaldimine) (TSAN) analogues were prepared and characterized. NMR and single-crystal X-ray diffraction studies showed that they are found in different tautomeric forms, ranging from keto-enamine to enol-imine, with two showing intermediate behavior. We present a simple structural model governing the relative stability of the keto-enamine versus enol-imine tautomeric form of TSANs, based on experimental and theoretical findings on the new and existing TSAN analogues. Examination of electron delocalization throughout this range reveals a connection between tautomeric state and whether the substituent is σ or π electron withdrawing/donating. This can be used as a qualitative guide to design TSANs with controlled tautomeric behavior. These results will be helpful to the growing number of researchers in supramolecular chemistry who use TSANs to construct new materials and cages.

20.
Chemistry ; 22(49): 17657-17672, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27786389

RESUMEN

Campestarenes are a new family of Schiff-base macrocycles that form selectively in a one-step synthesis. These macrocycles with five-fold symmetry show solvent-dependent tautomerization and dimerization or aggregation. In this paper, we have prepared new soluble campestarenes that do not aggregate. The initial single-crystal X-ray diffraction study of a campestarene reveals that these macrocycles are nearly flat. The tautomeric behavior of the campestarenes has been extensively studied by variable-temperature, multinuclear NMR spectroscopy, UV/Vis spectroscopy, and IR spectroscopy. In polar solvents, such as DMF, the molecules exist predominantly in their keto-enamine form, but the enol-imine tautomer is dominant in non-polar solvents. A detailed computational study of the tautomeric forms of campestarenes provides a theoretical basis for their behavior and corroborates the experimental data. The results of this study give the first comprehensive understanding of the electronic and spectroscopic properties of these pentagonal macrocycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA