Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Hum Nutr Diet ; 36(4): 1225-1233, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36992552

RESUMEN

BACKGROUND: Patients with advanced malignancy who are unable to meet their nutritional requirements orally or enterally as a result of intestinal failure may be considered for parenteral nutrition support. Current UK guidance recommends that patients with a 3-month prognosis and good performance status (i.e., Karnofsky performance status >50) should be considered for this intervention at home (termed Home Parenteral Nutrition; HPN). However, HPN is a nationally commissioned service by National Health Service (NHS) England and Improvement that can only be initiated at specific NHS centres and so may not be easily accessed by patients outside of these centres. This survey aimed to identify current clinical practice across UK hospitals about how palliative parenteral nutrition is initiated. METHODS: Clinical staff associated with Nutrition Support Teams at NHS Organisations within the UK were invited to complete an electronically administered survey of national clinical practice through advertisements posted on relevant professional interest groups. RESULTS: Sixty clinicians responded to the survey administered between September and November 2020. The majority of respondents responded positively that decisions made to initiate palliative parenteral nutrition were conducted in alignment with current national guidance in relation to decision-making and formulation of parenteral nutrition. Variation was observed in relation to the provision of advance care planning in relation to nutrition support prior to discharge, as well as the consideration of venting gastrostomy placement in patients with malignant bowel obstruction unsuitable for surgical intervention. CONCLUSIONS: Adherence to current national guidance in relation to the provision of palliative parenteral nutrition is variable for some aspects of care. Further work is required particularly in relation to maximising the opportunity for the provision of advance care planning prior to discharge in this patient cohort.


Asunto(s)
Obstrucción Intestinal , Neoplasias , Nutrición Parenteral en el Domicilio , Humanos , Medicina Estatal , Neoplasias/complicaciones , Neoplasias/terapia , Pronóstico
2.
Biophys J ; 120(24): 5592-5618, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34767789

RESUMEN

The ongoing COVID-19 pandemic is a global public health emergency requiring urgent development of efficacious vaccines. While concentrated research efforts have focused primarily on antibody-based vaccines that neutralize SARS-CoV-2, and several first-generation vaccines have either been approved or received emergency use authorization, it is forecasted that COVID-19 will become an endemic disease requiring updated second-generation vaccines. The SARS-CoV-2 surface spike (S) glycoprotein represents a prime target for vaccine development because antibodies that block viral attachment and entry, i.e., neutralizing antibodies, bind almost exclusively to the receptor-binding domain. Here, we develop computational models for a large subset of S proteins associated with SARS-CoV-2, implemented through coarse-grained elastic network models and normal mode analysis. We then analyze local protein domain dynamics of the S protein systems and their thermal stability to characterize structural and dynamical variability among them. These results are compared against existing experimental data and used to elucidate the impact and mechanisms of SARS-CoV-2 S protein mutations and their associated antibody binding behavior. We construct a SARS-CoV-2 antigenic map and offer predictions about the neutralization capabilities of antibody and S mutant combinations based on protein dynamic signatures. We then compare SARS-CoV-2 S protein dynamics to SARS-CoV and MERS-CoV S proteins to investigate differing antibody binding and cellular fusion mechanisms that may explain the high transmissibility of SARS-CoV-2. The outbreaks associated with SARS-CoV, MERS-CoV, and SARS-CoV-2 over the last two decades suggest that the threat presented by coronaviruses is ever-changing and long term. Our results provide insights into the dynamics-driven mechanisms of immunogenicity associated with coronavirus S proteins and present a new, to our knowledge, approach to characterize and screen potential mutant candidates for immunogen design, as well as to characterize emerging natural variants that may escape vaccine-induced antibody responses.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Desarrollo de Vacunas
3.
Small ; 17(45): e2103994, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34605163

RESUMEN

The emergence of interlayer excitons (IEs) from atomic layered transition metal dichalcogenides (TMDCs) heterostructures has drawn tremendous attention due to their unique and exotic optoelectronic properties. Coupling the IEs into optical cavities provides distinctive electromagnetic environments which plays an important role in controlling multiple optical processes such as optical nonlinear generation or photoluminescence enhancement. Here, the integration of IEs in TMDCs into plasmonic nanocavities based on a nanocube on a metallic mirror is reported. Spectroscopic studies reveal an order of magnitude enhancement of the IE at room temperature and a 5-time enhancement in fluorescence at cryogenic temperatures. Cavity modeling reveals that the enhancement of the emission is attributed to both increased excitation efficiency and Purcell effect from the cavity. The results show a novel method to control the excitonic processes in TMDC heterostructures to build high performance photonics and optoelectronics devices.

4.
Opt Lett ; 46(3): 564-567, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528410

RESUMEN

Hexagonal boron nitride (hBN) is a layered dielectric material with a wide range of applications in optics and photonics. In this work, we demonstrate a fabrication method for few-layer hBN flakes with areas up to 5000µm2. We show that hBN in this form can be integrated with photonic microstructures: as an example, we use a circular Bragg grating (CBG). The layer quality of the exfoliated hBN flake on and off a CBG is confirmed by Raman spectroscopy and second-harmonic generation (SHG) microscopy. We show that the SHG signal is uniform across the hBN sample outside the CBG and is amplified in the center of the CBG.

5.
Nano Lett ; 20(7): 5309-5314, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32530635

RESUMEN

Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing.

6.
J Biol Chem ; 289(39): 26859-26871, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25100729

RESUMEN

Although amyloid fibrils assembled in vitro commonly involve a single protein, fibrils formed in vivo can contain multiple protein sequences. The amyloidogenic protein human ß2-microglobulin (hß2m) can co-polymerize with its N-terminally truncated variant (ΔN6) in vitro to form hetero-polymeric fibrils that differ from their homo-polymeric counterparts. Discrimination between the different assembly precursors, for example by binding of a biomolecule to one species in a mixture of conformers, offers an opportunity to alter the course of co-assembly and the properties of the fibrils formed. Here, using hß2m and its amyloidogenic counterpart, ΔΝ6, we describe selection of a 2'F-modified RNA aptamer able to distinguish between these very similar proteins. SELEX with a N30 RNA pool yielded an aptamer (B6) that binds hß2m with an EC50 of ∼200 nM. NMR spectroscopy was used to assign the (1)H-(15)N HSQC spectrum of the B6-hß2m complex, revealing that the aptamer binds to the face of hß2m containing the A, B, E, and D ß-strands. In contrast, binding of B6 to ΔN6 is weak and less specific. Kinetic analysis of the effect of B6 on co-polymerization of hß2m and ΔN6 revealed that the aptamer alters the kinetics of co-polymerization of the two proteins. The results reveal the potential of RNA aptamers as tools for elucidating the mechanisms of co-assembly in amyloid formation and as reagents able to discriminate between very similar protein conformers with different amyloid propensity.


Asunto(s)
Amiloide/química , Aptámeros de Nucleótidos/química , Multimerización de Proteína , Microglobulina beta-2/química , Humanos , Resonancia Magnética Nuclear Biomolecular
7.
Angew Chem Int Ed Engl ; 54(3): 974-8, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25413024

RESUMEN

Molecular crowding plays a significant role in regulating molecular conformation in cellular environments. It is also likely to be important wherever high molecular densities are required, for example in surface-phase studies, in which molecular densities generally far exceed those observed in solution. Using on-surface circular dichroism (CD) spectroscopy, we have investigated the structure of a synthetic peptide assembled into a highly packed monolayer. The immobilized peptide undergoes a structural transition between α-helical and random coil conformation upon changes in pH and ionic concentration, but critically the threshold for conformational change is altered dramatically by molecular crowding within the peptide monolayer. This study highlights the often overlooked role molecular crowding plays in regulating molecular structure and function in surface-phase studies of biological molecules.


Asunto(s)
Péptidos/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Proteínas Inmovilizadas/química , Simulación de Dinámica Molecular , Concentración Osmolar , Péptidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961133

RESUMEN

Tailed bacteriophages are one of the most numerous and diverse group of viruses. They store their genome at quasi-crystalline densities in capsids built from multiple copies of proteins adopting the HK97-fold. The high density of the genome exerts an internal pressure, requiring a maturation process that reinforces their capsids. However, it is unclear how capsid stabilization strategies have adapted to accommodate the evolution of larger genomes in this virus group. Here we characterized a novel capsid reinforcement mechanism in two evolutionary-related actinobacteriophages that modifies the length of a stabilization protein to accommodate a larger genome while maintaining the same capsid size. We used cryo-EM to reveal that capsids contained split hexamers of HK97-fold proteins with a stabilization protein in the chasm. The observation of split hexamers in mature capsids was unprecedented, so we rationalized this result mathematically, discovering that icosahedral capsids can be formed by all split or skewed hexamers as long as their T-number is not a multiple of three. Our results suggest that analogous stabilization mechanisms can be present in other icosahedral capsids, and they provide a strategy for engineering capsids accommodating larger DNA cargoes as gene delivery systems.

9.
Structure ; 31(3): 282-294.e5, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649709

RESUMEN

Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.


Asunto(s)
Bacteriófagos , Proteínas de la Cápside , Proteínas de la Cápside/química , Cápside/química , Filogenia , Bacteriófagos/metabolismo , Ensamble de Virus , Microscopía por Crioelectrón
10.
Cell Host Microbe ; 31(7): 1216-1231.e6, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37329881

RESUMEN

Glycosylation of eukaryotic virus particles is common and influences their uptake, trafficking, and immune recognition. In contrast, glycosylation of bacteriophage particles has not been reported; phage virions typically do not enter the cytoplasm upon infection, and they do not generally inhabit eukaryotic systems. We show here that several genomically distinct phages of Mycobacteria are modified with glycans attached to the C terminus of capsid and tail tube protein subunits. These O-linked glycans influence antibody production and recognition, shielding viral particles from antibody binding and reducing production of neutralizing antibodies. Glycosylation is mediated by phage-encoded glycosyltransferases, and genomic analysis suggests that they are relatively common among mycobacteriophages. Putative glycosyltransferases are also encoded by some Gordonia and Streptomyces phages, but there is little evidence of glycosylation among the broader phage population. The immune response to glycosylated phage virions in mice suggests that glycosylation may be an advantageous property for phage therapy of Mycobacterium infections.


Asunto(s)
Bacteriófagos , Micobacteriófagos , Animales , Ratones , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Glicosilación , Bacteriófagos/genética , Virión/genética , Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo
11.
ChemMedChem ; 18(10): e202200541, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36792530

RESUMEN

The Enterovirus (EV) genus includes several important human and animal pathogens. EV-A71, EV-D68, poliovirus (PV), and coxsackievirus (CV) outbreaks have affected millions worldwide, causing a range of upper respiratory, skin, and neuromuscular diseases, including acute flaccid myelitis, and hand-foot-and-mouth disease. There are no FDA-approved antiviral therapeutics for these enteroviruses. This study describes novel antiviral compounds targeting the conserved non-structural viral protein 2C with low micromolar to nanomolar IC50 values. The selection of resistant mutants resulted in amino acid substitutions in the viral capsid protein, implying these compounds may play a role in inhibiting the interaction of 2C and the capsid protein. The assembly and encapsidation stages of the viral life cycle still need to be fully understood, and the inhibitors reported here could be useful probes in understanding these processes.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedades Neuromusculares , Animales , Humanos , Antivirales/farmacología , Antivirales/metabolismo , Proteínas de la Cápside/metabolismo , Infecciones por Enterovirus/tratamiento farmacológico
12.
Anal Chem ; 84(15): 6595-602, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22793869

RESUMEN

We have used systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers against aminoglycoside antibiotics. The SELEX rounds were toggled against four pairs of aminoglycosides with the goal of isolating reagents that recognize conserved structural features. The resulting aptamers bind both of their selection targets with nanomolar affinities. They also bind the less structurally related targets, although they show clear specificity for this class of antibiotics. We show that this lack of aminoglycoside specificity is a common property of aptamers previously selected against single compounds and described as "specific". Broad target specificity aptamers would be ideal for sensors detecting the entire class of aminoglycosides. We have used ligand-induced aggregation of gold-nanoparticles coated with our aptamers as a rapid and sensitive assay for these compounds. In contrast to DNA aptamers, unmodified RNA aptamers cannot be used as the recognition ligand in this assay, whereas 2'-fluoro-pyrimidine derivatives work reliably. We discuss the possible application of these reagents as sensors for drug residues and the challenges for understanding the structural basis of aminoglycoside-aptamer recognition highlighted by the SELEX results.


Asunto(s)
Antibacterianos/análisis , Aptámeros de Nucleótidos/química , Oro/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie , Aminoglicósidos/análisis , Biotinilación , Cinética , Técnica SELEX de Producción de Aptámeros
13.
Langmuir ; 28(39): 13877-82, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22934624

RESUMEN

The coiled coil is a widespread protein motif responsible for directing the assembly of a wide range of protein complexes. To date, research has focused largely on the solution phase assembly of coiled-coil complexes. Here, we describe an investigation into coiled-coil heterodimer assembly where one of the peptides is immobilized directly onto a gold electrode. Immobilization is achieved by the introduction of a unique cysteine residue at the C terminus, allowing for covalent and orientated attachment to a thiol-reactive surface, here the gold electrode. We show an electrochemical impedance of the resulting self-assembled polypeptide monolayer around |Z| = 4 × 10(4) Ω cm(2) at 100 mHz with a minimum phase angle of -84°, consistent with the formation of a densely packed, insulating layer. The thickness of the peptide monolayer, as measured using ellipsometry, is around 3 nm, close to that expected for a self-assembled monolayer assembled from helical peptides. Crucially, we find that the efficiency of dimerization between a peptide in solution and its coiled-coil partner peptide immobilized on a surface is strongly dependent upon the density of the immobilized peptide layer, with dimer assembly being strongly suppressed by high-density peptide monolayers. We thus develop an approach for controlling the density of the immobilized peptide by diluting the monolayer with a thiolated, random-coil peptide to modulate dimerization efficiency and demonstrate electrochemical detection of highly specific, coiled-coil heterodimer on-surface assembly.


Asunto(s)
Péptidos/química , Dimerización , Técnicas Electroquímicas , Electrodos , Oro/química , Péptidos/síntesis química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
14.
Nanotechnology ; 23(49): 495304, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23154792

RESUMEN

Numerous nanoscale devices and materials have been fabricated in recent years using a variety of biological scaffolds. However, the interfacing of these devices and materials into existing circuits and ordered arrays has proved problematic. Here, we describe a simple solution to this problem using self-assembly of the peptide coiled-coil heterodimer ACID:BASE to immobilize M13 bacteriophage particles to specific locations on a patterned gold surface. Surface plasmon resonance demonstrated that free ACID peptides will assemble onto a surface derivatized with BASE. We then displayed the ACID peptide on the pIX coat protein of M13 and showed that these phage particles permit formation of the coiled-coil resulting in specific surface attachment. The ACID:immobilized BASE affinities appear to be similar for free peptide and phage-displayed ACID. Finally, we fabricated two gold electrodes, separated by a 200 nm gap, coated one of them with BASE and showed that this allows localization of the M13:ACID onto the functionalized electrode.


Asunto(s)
Bacteriófago M13/química , Conductometría/instrumentación , Electrodos , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Virión/química , Adsorción , Diseño de Equipo , Análisis de Falla de Equipo , Unión Proteica
15.
Am J Pharm Educ ; 86(5): 8643, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34507954

RESUMEN

Objective. For many pharmacy students in the United Kingdom there are few opportunities during undergraduate education to learn, or be exposed to, different ways of dealing with ethical and professional dilemmas in real life practice. This study aimed to explore the experiences of graduates during their pre-registration year and early practice (up to two years post-qualification) on their perceived preparedness to make professional decisions when faced with problems or dilemmas once in practice.Method. Semi-structured interviews were undertaken with preregistration trainees and early careers pharmacists (up to two years qualified). Interviews were transcribed verbatim and analyzed thematically using the Framework Approach.Results. Eighteen interviews (nine preregistration trainees and nine qualified pharmacists) were conducted. Four key themes emerged: continued learning in practice, exposure to role-modelling, moral courage, and stress and moral distress.Conclusion. This study found that preregistration trainees and early career pharmacists perceive a need to be challenged and to receive further support and positive role-modelling to help them continue to develop their ethical and professional decision-making skills in the practice setting. The level and quality of support reported was variable, and there was a reliance on informal networks of peer support in many cases. This study suggests a need to raise awareness among preregistration tutors (preceptors) and line managers (supervisors) to improve and increase support in this area.


Asunto(s)
Educación en Farmacia , Farmacias , Farmacia , Educación en Farmacia/métodos , Humanos , Farmacéuticos , Investigación Cualitativa , Reino Unido
16.
Light Sci Appl ; 11(1): 186, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725815

RESUMEN

Controlling and manipulating individual quantum systems in solids underpins the growing interest in the development of scalable quantum technologies. Recently, hexagonal boron nitride (hBN) has garnered significant attention in quantum photonic applications due to its ability to host optically stable quantum emitters. However, the large bandgap of hBN and the lack of efficient doping inhibits electrical triggering and limits opportunities to study the electrical control of emitters. Here, we show an approach to electrically modulate quantum emitters in an hBN-graphene van der Waals heterostructure. We show that quantum emitters in hBN can be reversibly activated and modulated by applying a bias across the device. Notably, a significant number of quantum emitters are intrinsically dark and become optically active at non-zero voltages. To explain the results, we provide a heuristic electrostatic model of this unique behavior. Finally, employing these devices we demonstrate a nearly-coherent source with linewidths of ~160 MHz. Our results enhance the potential of hBN for tunable solid-state quantum emitters for the growing field of quantum information science.

17.
J Mol Biol ; 434(20): 167797, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998704

RESUMEN

Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.


Asunto(s)
Proteínas de la Cápside , Levivirus , Ensamble de Virus , Proteínas de la Cápside/química , Genoma Viral/genética , Levivirus/química , Levivirus/patogenicidad , Levivirus/fisiología , ARN Viral/genética , Ensamble de Virus/genética
18.
Nat Commun ; 8(1): 83, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710463

RESUMEN

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

19.
Nat Commun ; 8(1): 5, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28232749

RESUMEN

Assembly of the major viral pathogens of the Picornaviridae family is poorly understood. Human parechovirus 1 is an example of such viruses that contains 60 short regions of ordered RNA density making identical contacts with the protein shell. We show here via a combination of RNA-based systematic evolution of ligands by exponential enrichment, bioinformatics analysis and reverse genetics that these RNA segments are bound to the coat proteins in a sequence-specific manner. Disruption of either the RNA coat protein recognition motif or its contact amino acid residues is deleterious for viral assembly. The data are consistent with RNA packaging signals playing essential roles in virion assembly. Their binding sites on the coat proteins are evolutionarily conserved across the Parechovirus genus, suggesting that they represent potential broad-spectrum anti-viral targets.The mechanism underlying packaging of genomic RNA into viral particles is not well understood for human parechoviruses. Here the authors identify short RNA motifs in the parechovirus genome that bind capsid proteins, providing approximately 60 specific interactions for virion assembly.


Asunto(s)
Proteínas de la Cápside/genética , Genoma Viral , Parechovirus/genética , ARN Viral/genética , Virión/genética , Ensamble de Virus , Secuencias de Aminoácidos , Emparejamiento Base , Sitios de Unión , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Biología Computacional , Secuencia Conservada , Expresión Génica , Humanos , Modelos Moleculares , Parechovirus/metabolismo , Parechovirus/ultraestructura , Unión Proteica , Pliegue del ARN , ARN Viral/metabolismo , ARN Viral/ultraestructura , Genética Inversa , Técnica SELEX de Producción de Aptámeros , Virión/metabolismo , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA