Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(48): 24143-24149, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712423

RESUMEN

Life for many of the world's marine fish begins at the ocean surface. Ocean conditions dictate food availability and govern survivorship, yet little is known about the habitat preferences of larval fish during this highly vulnerable life-history stage. Here we show that surface slicks, a ubiquitous coastal ocean convergence feature, are important nurseries for larval fish from many ocean habitats at ecosystem scales. Slicks had higher densities of marine phytoplankton (1.7-fold), zooplankton (larval fish prey; 3.7-fold), and larval fish (8.1-fold) than nearby ambient waters across our study region in Hawai'i. Slicks contained larger, more well-developed individuals with competent swimming abilities compared to ambient waters, suggesting a physiological benefit to increased prey resources. Slicks also disproportionately accumulated prey-size plastics, resulting in a 60-fold higher ratio of plastics to larval fish prey than nearby waters. Dissections of hundreds of larval fish found that 8.6% of individuals in slicks had ingested plastics, a 2.3-fold higher occurrence than larval fish from ambient waters. Plastics were found in 7 of 8 families dissected, including swordfish (Xiphiidae), a commercially targeted species, and flying fish (Exocoetidae), a principal prey item for tuna and seabirds. Scaling up across an ∼1,000 km2 coastal ecosystem in Hawai'i revealed slicks occupied only 8.3% of ocean surface habitat but contained 42.3% of all neustonic larval fish and 91.8% of all floating plastics. The ingestion of plastics by larval fish could reduce survivorship, compounding threats to fisheries productivity posed by overfishing, climate change, and habitat loss.


Asunto(s)
Peces/fisiología , Larva , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Tamaño Corporal , Exposición Dietética/análisis , Ecotoxicología , Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Peces/crecimiento & desarrollo , Hawaii , Fitoplancton , Plásticos/toxicidad , Conducta Predatoria , Natación , Contaminantes Químicos del Agua/toxicidad , Zooplancton
2.
J Hered ; 111(1): 70-83, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31943081

RESUMEN

Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.


Asunto(s)
Especiación Genética , Filogeografía , Animales , Regiones Antárticas , Organismos Acuáticos , Peces , Agua Dulce , Hawaii , Invertebrados , Plantas
3.
Mol Ecol ; 27(6): 1479-1493, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29420860

RESUMEN

One of the primary challenges of evolutionary research is to identify ecological factors that favour reproductive isolation. Therefore, studying partially isolated taxa has the potential to provide novel insight into the mechanisms of evolutionary divergence. Our study utilizes an adaptive colour polymorphism in the arc-eye hawkfish (Paracirrhites arcatus) to explore the evolution of reproductive barriers in the absence of geographic isolation. Dark and light morphs are ecologically partitioned into basaltic and coral microhabitats a few metres apart. To test whether ecological barriers have reduced gene flow among dark and light phenotypes, we evaluated genetic variation at 30 microsatellite loci and a nuclear exon (Mc1r) associated with melanistic coloration. We report low, but significant microsatellite differentiation among colour morphs and stronger divergence in the coding region of Mc1r indicating signatures of selection. Critically, we observed greater genetic divergence between colour morphs on the same reefs than that between the same morphs in different geographic locations. We hypothesize that adaptation to the contrasting microhabitats is overriding gene flow and is responsible for the partial reproductive isolation observed between sympatric colour morphs. Combined with complementary studies of hawkfish ecology and behaviour, these genetic results indicate an ecological barrier to gene flow initiated by habitat selection and enhanced by assortative mating. Hence, the arc-eye hawkfish fulfil theoretical expectations for the earliest phase of speciation with gene flow.


Asunto(s)
Peces/genética , Especiación Genética , Variación Genética/genética , Genética de Población , Animales , Ecología , Ecosistema , Flujo Génico , Repeticiones de Microsatélite/genética , Pigmentación/genética , Polimorfismo Genético , Especificidad de la Especie , Simpatría/genética
4.
Mar Pollut Bull ; 198: 115820, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029668

RESUMEN

Island communities, like the Republic of the Marshall Islands (RMI), depend on marine resources for food and economics, so plastic ingestion by those resources is a concern. The gastrointestinal tracts of nine species of reef fish across five trophic groups (97 fish) were examined for plastics >1 mm. Over 2100 putative plastic particles from 72 fish were identified under light microscopy. Only 115 of these from 47 fish passed a plastic screening method using Fourier-transform infrared microspectroscopy (µFTIR) in reflectance mode. All of these were identified as natural materials in a final confirmatory analysis, attenuated total reflectance FTIR. The high false-positive rate of visual and µFTIR methods highlight the importance of using multiple polymer identification methods. Limited studies on ingested plastic in reef fish present challenging comparisons because of different methods used. No plastic >1 mm were found in the RMI reef fish, reassuring human consumers.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Plásticos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Peces , Micronesia
5.
Mitochondrial DNA B Resour ; 8(2): 197-203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755876

RESUMEN

We provide the complete mitochondrial genome of the reef manta ray, Mobula alfredi, using an ezRAD approach. The total length of the mitogenome was 18,166 bp and contained 13 protein-coding genes, 22 transfer RNAs genes, two ribosomal RNA genes, and one non-coding control region. The gene organization and length are similar to other Mobula species. This reference mitogenome that includes the control region is expected to be a valuable resource for molecular-based species identification, population genomics, and phylogeography.

6.
BMC Ecol Evol ; 23(1): 31, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422622

RESUMEN

BACKGROUND: Reef manta rays (Mobula alfredi) are globally distributed in tropical and subtropical seas. Their life history traits (slow growth, late maturity, low reproductive output) make them vulnerable to perturbations and therefore require informed management strategies. Previous studies have reported wide-spread genetic connectivity along continental shelves suggesting high gene flow along continuous habitats spanning hundreds of kilometers. However, in the Hawaiian Islands, tagging and photo-identification evidence suggest island populations are isolated despite proximity, a hypothesis that has not yet been evaluated with genetic data. RESULTS: This island-resident hypothesis was tested by analyzing whole mitogenome haplotypes and 2048 nuclear single nucleotide polymorphisms (SNPs) between M. alfredi (n = 38) on Hawai'i Island and Maui Nui (the 4-island complex of Maui, Moloka'i, Lana'i and Kaho'olawe). Strong divergence in the mitogenome (ΦST = 0.488) relative to nuclear genome-wide SNPs (neutral FST = 0.003; outlier FST = 0.186), and clustering of mitochondrial haplotypes among islands provides robust evidence that female reef manta rays are strongly philopatric and do not migrate between these two island groups. Combined with restricted male-mediated migration, equivalent to a single male moving between islands every 2.2 generations (~ 64 years), we provide evidence these populations are significantly demographically isolated. Estimates of contemporary effective population size (Ne) are 104 (95% CI: 99-110) in Hawai'i Island and 129 (95% CI: 122-136) in Maui Nui. CONCLUSIONS: Concordant with evidence from photo identification and tagging studies, these genetic results indicate reef manta rays in Hawai'i have small, genetically-isolated resident island populations. We hypothesize that due to the Island Mass Effect, large islands provide sufficient resources to support resident populations, thereby making crossing deep channels separating island groups unnecessary. Small effective population size, low genetic diversity, and k-selected life history traits make these isolated populations vulnerable to region-specific anthropogenic threats, which include entanglement, boat strikes, and habitat degradation. The long-term persistence of reef manta rays in the Hawaiian Islands will require island-specific management strategies.


Asunto(s)
Elasmobranquios , Animales , Masculino , Femenino , Hawaii , Ecosistema , Genómica , Océanos y Mares
7.
Zootaxa ; 5214(2): 235-260, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37044905

RESUMEN

Estimating stomatopod species diversity using morphology alone has long been difficult; though over 450 species have been described, new species are still being discovered regularly despite the cryptic behaviors of adults. However, the larvae of stomatopods are more easily obtained due to their pelagic habitat, and have been the focus of recent studies of diversity. Studies of morphological diversity describe both conserved and divergent traits in larval stomatopods, but generally cannot be linked to a particular species. Conversely, genetic studies of stomatopod larvae using DNA barcoding can be used to estimate species diversity, but are generally not linked to known species by analyses of morphological characters. Here we combine these two approaches, larval morphology and genetics, to estimate stomatopod species diversity in the Hawaiian Islands. Over 22 operational taxonomic units (OTUs) were identified genetically, corresponding to 20 characterized morphological types. Species from three major superfamilies of stomatopod were identified: Squilloidea (4 OTUs, 3 morphotypes), Gonodactyloidea (9, 8), and Lysiosquilloidea (6, 7). Among these, lysiosquilloids were more diverse based on larval morphotypes and OTUs as compared to previously documented Hawaiian species (3), while squilloids had a lower diversity of species represented by collected larvae as compared to the seven species previously documented. Two OTUs / morphotypes could not be identified to superfamily as their molecular and morphological features did not closely match any available information, suggesting they belong to poorly sampled superfamilies. The pseudosquillid, Pseudosquillana richeri, was discovered for the first time from Hawai'i. This study contributes an updated estimate for Hawaiian stomatopod diversity for a total of 24 documented species, provides references for identification of larval stomatopods across the three major superfamilies, and emphasizes the lack of knowledge of species diversity in more cryptic stomatopod superfamilies, such as Lysiosquilloidea.


Asunto(s)
Crustáceos , Ecosistema , Animales , Filogenia , Hawaii , Larva/genética , Larva/anatomía & histología , Crustáceos/genética
8.
Sci Rep ; 11(1): 3197, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542255

RESUMEN

Most marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment. Here, we provide evidence that surface slicks, a common coastal convergence feature, provide nursery habitat for diverse marine larvae, including > 100 species of commercially and ecologically important fishes. The vast majority of invertebrate and larval fish taxa sampled had mean densities 2-110 times higher in slicks than in ambient water. Combining in-situ surveys with remote sensing, we estimate that slicks contain 39% of neustonic larval fishes, 26% of surface-dwelling zooplankton (prey), and 75% of floating organic debris (shelter) in our 1000 km2 study area in Hawai'i. Results indicate late-larval fishes actively select slick habitats to capitalize on concentrations of diverse prey and shelter. By providing these survival advantages, surface slicks enhance larval supply and replenishment of adult populations from coral reef, epipelagic, and deep-water ecosystems. Our findings suggest that slicks play a critically important role in enhancing productivity in tropical marine ecosystems.

9.
PeerJ ; 1: e203, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282669

RESUMEN

Here, we introduce ezRAD, a novel strategy for restriction site-associated DNA (RAD) that requires little technical expertise or investment in laboratory equipment, and demonstrate its utility for ten non-model organisms across a wide taxonomic range. ezRAD differs from other RAD methods primarily through its use of standard Illumina TruSeq library preparation kits, which makes it possible for any laboratory to send out to a commercial genomic core facility for library preparation and next-generation sequencing with virtually no additional investment beyond the cost of the service itself. This simplification opens RADseq to any lab with the ability to extract DNA and perform a restriction digest. ezRAD also differs from others in its flexibility to use any restriction enzyme (or combination of enzymes) that cuts frequently enough to generate fragments of the desired size range, without requiring the purchase of separate adapters for each enzyme or a sonication step, which can further decrease the cost involved in choosing optimal enzymes for particular species and research questions. We apply this method across a wide taxonomic diversity of non-model organisms to demonstrate the utility and flexibility of our approach. The simplicity of ezRAD makes it particularly useful for the discovery of single nucleotide polymorphisms and targeted amplicon sequencing in natural populations of non-model organisms that have been historically understudied because of lack of genomic information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA