Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Genomics ; 22(1): 234, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823803

RESUMEN

BACKGROUND: For multicellular organisms, much remains unknown about the dynamics of synonymous codon and amino acid use in highly expressed genes, including whether their use varies with expression in different tissue types and sexes. Moreover, specific codons and amino acids may have translational functions in highly transcribed genes, that largely depend on their relationships to tRNA gene copies in the genome. However, these relationships and putative functions are poorly understood, particularly in multicellular systems. RESULTS: Here, we studied codon and amino acid use in highly expressed genes from reproductive and nervous system tissues (male and female gonad, somatic reproductive system, brain and ventral nerve cord, and male accessory glands) in the cricket Gryllus bimaculatus. We report an optimal codon, defined as the codon preferentially used in highly expressed genes, for each of the 18 amino acids with synonymous codons in this organism. The optimal codons were mostly shared among tissue types and both sexes. However, the frequency of optimal codons was highest in gonadal genes. Concordant with translational selection, a majority of the optimal codons had abundant matching tRNA gene copies in the genome, but sometimes obligately required wobble tRNAs. We suggest the latter may comprise a mechanism for slowing translation of abundant transcripts, particularly for cell-cycle genes. Non-optimal codons, defined as those least commonly used in highly transcribed genes, intriguingly often had abundant tRNAs, and had elevated use in a subset of genes with specialized functions (gametic and apoptosis genes), suggesting their use promotes the translational upregulation of particular mRNAs. In terms of amino acids, we found evidence suggesting that amino acid frequency, tRNA gene copy number, and amino acid biosynthetic costs (size/complexity) had all interdependently evolved in this insect model, potentially for translational optimization. CONCLUSIONS: Collectively, the results suggest a model whereby codon use in highly expressed genes, including optimal, wobble, and non-optimal codons, and their tRNA abundances, as well as amino acid use, have been influenced by adaptation for various functional roles in translation within this cricket. The effects of expression in different tissue types and the two sexes are discussed.


Asunto(s)
Aminoácidos , Gryllidae , Aminoácidos/metabolismo , Animales , Codón/genética , Femenino , Dosificación de Gen , Gryllidae/genética , Gryllidae/metabolismo , Masculino , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
J Evol Biol ; 34(8): 1188-1211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114713

RESUMEN

Sex-biased gene expression, particularly sex-biased expression in the gonad, has been linked to rates of protein sequence evolution (nonsynonymous to synonymous substitutions, dN/dS) in animals. However, in insects, sex-biased expression studies remain centred on a few holometabolous species. Moreover, other major tissue types such as the brain remain underexplored. Here, we studied sex-biased gene expression and protein evolution in a hemimetabolous insect, the cricket Gryllus bimaculatus. We generated novel male and female RNA-seq data for two sexual tissue types, the gonad and somatic reproductive system, and for two core components of the nervous system, the brain and ventral nerve cord. From a genome-wide analysis, we report several core findings. Firstly, testis-biased genes had accelerated evolution, as compared to ovary-biased and unbiased genes, which was associated with positive selection events. Secondly, although sex-biased brain genes were much less common than for the gonad, they exhibited a striking tendency for rapid protein sequence evolution, an effect that was stronger for the female than male brain. Further, some sex-biased brain genes were linked to sexual functions and mating behaviours, which we suggest may have accelerated their evolution via sexual selection. Thirdly, a tendency for narrow cross-tissue expression breadth, suggesting low pleiotropy, was observed for sex-biased brain genes, suggesting relaxed purifying selection, which we speculate may allow enhanced freedom to evolve adaptive protein functional changes. The findings of rapid evolution of testis-biased genes and male and female-biased brain genes are discussed with respect to pleiotropy, positive selection and the mating biology of this cricket.


Asunto(s)
Gónadas , Caracteres Sexuales , Animales , Encéfalo , Femenino , Masculino , Ovario , Testículo
3.
Proc Natl Acad Sci U S A ; 114(23): 5784-5791, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28584112

RESUMEN

In animals, primordial germ cells (PGCs) give rise to the germ lines, the cell lineages that produce sperm and eggs. PGCs form in embryogenesis, typically by one of two modes: a likely ancestral mode wherein germ cells are induced during embryogenesis by cell-cell signaling (induction) or a derived mechanism whereby germ cells are specified by using germ plasm-that is, maternally specified germ-line determinants (inheritance). The causes of the shift to germ plasm for PGC specification in some animal clades remain largely unknown, but its repeated convergent evolution raises the question of whether it may result from or confer an innate selective advantage. It has been hypothesized that the acquisition of germ plasm confers enhanced evolvability, resulting from the release of selective constraint on somatic gene networks in embryogenesis, thus leading to acceleration of an organism's protein-sequence evolution, particularly for genes expressed at early developmental stages, and resulting in high speciation rates in germ plasm-containing lineages (denoted herein as the "PGC-specification hypothesis"). Although that hypothesis, if supported, could have major implications for animal evolution, our recent large-scale coding-sequence analyses from vertebrates and invertebrates provided important examples of genera that do not support the hypothesis of liberated constraint under germ plasm. Here, we consider reasons why germ plasm might be neither a direct target of selection nor causally linked to accelerated animal evolution. We explore alternate scenarios that could explain the repeated evolution of germ plasm and propose potential consequences of the inheritance and induction modes to animal evolutionary biology.


Asunto(s)
Evolución Biológica , Redes Reguladoras de Genes , Células Germinativas/citología , Animales , Diferenciación Celular , Especiación Genética , Células Germinativas/metabolismo , Tasa de Mutación
4.
BMC Evol Biol ; 19(1): 53, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744572

RESUMEN

BACKGROUND: Germ lines are the cell lineages that give rise to the sperm and eggs in animals. The germ lines first arise from primordial germ cells (PGCs) during embryogenesis: these form from either a presumed derived mode of preformed germ plasm (inheritance) or from an ancestral mechanism of inductive cell-cell signalling (induction). Numerous genes involved in germ line specification and development have been identified and functionally studied. However, little is known about the molecular evolutionary dynamics of germ line genes in metazoan model systems. RESULTS: Here, we studied the molecular evolution of germ line genes within three metazoan model systems. These include the genus Drosophila (N=34 genes, inheritance), the fellow insect Apis (N=30, induction), and their more distant relative Caenorhabditis (N=23, inheritance). Using multiple species and established phylogenies in each genus, we report that germ line genes exhibited marked variation in the constraint on protein sequence divergence (dN/dS) and codon usage bias (CUB) within each genus. Importantly, we found that de novo lineage-specific inheritance (LSI) genes in Drosophila (osk, pgc) and in Caenorhabditis (pie-1, pgl-1), which are essential to germ plasm functions under the derived inheritance mode, displayed rapid protein sequence divergence relative to the other germ line genes within each respective genus. We show this may reflect the evolution of specialized germ plasm functions and/or low pleiotropy of LSI genes, features not shared with other germ line genes. In addition, we observed that the relative ranking of dN/dS and of CUB between genera were each more strongly correlated between Drosophila and Caenorhabditis, from different phyla, than between Drosophila and its insect relative Apis, suggesting taxonomic differences in how germ line genes have evolved. CONCLUSIONS: Taken together, the present results advance our understanding of the evolution of animal germ line genes within three well-known metazoan models. Further, the findings provide insights to the molecular evolution of germ line genes with respect to LSI status, pleiotropy, adaptive evolution as well as PGC-specification mode.


Asunto(s)
Evolución Molecular , Células Germinativas/metabolismo , Animales , Abejas/genética , Caenorhabditis/genética , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Pleiotropía Genética , Células Germinativas/citología , Patrón de Herencia/genética , Filogenia , Análisis de Secuencia de Proteína , Especificidad de la Especie
5.
BMC Evol Biol ; 19(1): 60, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30786879

RESUMEN

BACKGROUND: Sex-biased gene expression is thought to drive the phenotypic differences in males and females in metazoans. Drosophila has served as a primary model for studying male-female differences in gene expression, and its effects on protein sequence divergence. However, the forces shaping evolution of sex-biased expression remain largely unresolved, including the roles of selection and pleiotropy. Research on sex organs in Drosophila, employing original approaches and multiple-species contrasts, provides a means to gain insights into factors shaping the turnover and magnitude (fold-bias) of sex-biased expression. RESULTS: Here, using recent RNA-seq data, we studied sex-biased gonadal expression in 10,740 protein coding sequences in four species of Drosophila, D. melanogaster, D. simulans, D. yakuba and D. ananassae (5 to 44 My divergence). Using an approach wherein we identified genes with lineage-specific transitions (LSTs) in sex-biased status (amongst testis-biased, ovary-biased and unbiased; thus, six transition types) standardized to the number of genes with the ancestral state (S-LSTs), and those with clade-wide expression bias status, we reveal several key findings. First, the six categorical types of S-LSTs in sex-bias showed disparate rates of turnover, consistent with differential selection pressures. Second, the turnover in sex-biased status was largely unrelated to cross-tissue expression breadth, suggesting pleiotropy does not restrict evolution of sex-biased expression. Third, the fold-sex-biased expression, for both testis-biased and ovary-biased genes, evolved directionally over time toward higher values, a crucial finding that could be interpreted as a selective advantage of greater sex-bias, and sexual antagonism. Fourth, in terms of protein divergence, genes with LSTs to testis-biased expression exhibited weak signals of elevated rates of evolution (than ovary-biased) in as little as 5 My, which strengthened over time. Moreover, genes with clade-wide testis-specific expression (44 My), a status not observed for any ovary-biased genes, exhibited striking acceleration of protein divergence, which was linked to low pleiotropy. CONCLUSIONS: By studying LSTs and clade-wide sex-biased gonadal expression in a multi-species clade of Drosophila, we describe evidence that interspecies turnover and magnitude of sex-biased expression have been influenced by selection. Further, whilst pleiotropy was not connected to turnover in sex-biased gonadal expression, it likely explains protein sequence divergence.


Asunto(s)
Drosophila/genética , Evolución Molecular , Gónadas/metabolismo , Caracteres Sexuales , Animales , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Pleiotropía Genética , Masculino , Ovario/metabolismo , Filogenia , Especificidad de la Especie , Testículo/metabolismo
6.
Genome Res ; 25(1): 100-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25342722

RESUMEN

We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78-6.89 × 10(-13) intron gains per nucleotide site per year) and a high intron loss rate (7.53-13.76 × 10(-10) intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5' intron position bias and a low intron GC content. However, intron sequence analyses suggest that the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Intrones , Neurospora/genética , Selección Genética , Reparación del ADN por Unión de Extremidades , ADN de Hongos/genética , ADN Mitocondrial/genética , Frecuencia de los Genes , Genética de Población , Mutación , Neurospora/clasificación , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Análisis de Secuencia de ADN
7.
PLoS Genet ; 8(7): e1002820, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844246

RESUMEN

The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes.


Asunto(s)
Cromosomas Fúngicos/genética , Hongos , Genes del Tipo Sexual de los Hongos , Hibridación Genética/genética , Neurospora , Alelos , Evolución Molecular , Hongos/genética , Genoma Fúngico , Haploidia , Neurospora/genética , Filogenia , Recombinación Genética
8.
Mol Biol Evol ; 30(11): 2435-46, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23966547

RESUMEN

Differential gene expression is believed to largely explain sexually dichotomous phenotypes. This phenomenon is especially significant in hermaphrodites, in which male and female sexual tissues have identical genotypes. Sex differences in transcription have been linked to molecular evolution: genes with higher expression in male compared with female sexual tissues (i.e., male-biased genes) have been associated with rapid gene divergence in various animals and plants, implying that selective differences exist among the sexual structures. In the present investigation, we examined expressed sequence tags, microarrays, and gene sequence data from the hermaphroditic fungus Neurospora crassa and confirmed selective differences of genes with disparate expression among male versus female sexual structures in this organism. The results held across various genotypes and stages of sexual development. Furthermore, our data showed that N. crassa comprises a rare example of an organism where female-biased genes evolve rapidly; they exhibited faster evolution at the protein level and reduced optimal codon usage compared with male-biased genes, sexually unbiased genes, and vegetative genes. Female-biased genes also had a greater portion of sites that experienced positive selection and showed stronger signals of selective sweeps than male-biased genes, suggesting that the rapid evolution is at least partly driven by adaptive evolution. Distinctive aspects of the reproductive biology of N. crassa which might explain the rapid evolution of female-biased genes are discussed, particularly the propensity for female-female competition during mating, as well as the multifunctional nature of male structures. The present findings open new opportunities to test hypotheses about sex-biased gene expression and molecular evolution.


Asunto(s)
Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Organismos Hermafroditas/genética , Neurospora crassa/genética , Codón , Evolución Molecular , Etiquetas de Secuencia Expresada , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Neurospora crassa/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Selección Genética
9.
Bioessays ; 34(11): 934-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22968834

RESUMEN

The fungus Neurospora comprises a novel model for testing hypotheses involving the role of sex and reproduction in eukaryotic genome evolution. Its variation in reproductive mode, lack of sex-specific genotypes, availability of phylogenetic species, and young sex-regulating chromosomes make research in this genus complementary to animal and plant models.


Asunto(s)
Evolución Molecular , Genoma Fúngico/genética , Modelos Genéticos , Neurospora/genética , Cromosomas Fúngicos/genética , Reproducción/genética
10.
Genome Biol Evol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848313

RESUMEN

Ovaries play key roles in fitness and evolution: they are essential female reproductive structures that develop and house the eggs in sexually reproducing animals. In Drosophila, the mature ovary contains multiple tubular egg-producing structures known as ovarioles. Ovarioles arise from somatic cellular structures in the larval ovary called terminal filaments, formed by terminal filament cells and subsequently enclosed by sheath cells. As in many other insects, ovariole number per female varies extensively in Drosophila. At present however, there is a striking gap of information on genetic mechanisms and evolutionary forces that shape the well-documented rapid interspecies divergence of ovariole numbers. To address this gap, here we studied genes associated with D. melanogaster ovariole number or functions based on recent experimental and transcriptional datasets from larval ovaries, including terminal filaments and sheath cells, and assessed their rates and patterns of molecular evolution in five closely related species of the melanogaster subgroup that exhibit species-specific differences in ovariole numbers. From comprehensive analyses of protein sequence evolution (dN/dS), branch-site positive selection, expression specificity (tau) and phylogenetic regressions (PGLS), we report evidence of 42 genes that showed signs of playing roles in the genetic basis of interspecies evolutionary change of Drosophila ovariole number. These included the signalling genes upd2 and Ilp5 and extracellular matrix genes vkg and Col4a1, whose dN/dS predicted ovariole numbers among species. Together, we propose a model whereby a set of ovariole-involved gene proteins have an enhanced evolvability, including adaptive evolution, facilitating rapid shifts in ovariole number among Drosophila species.

11.
BMC Evol Biol ; 10: 234, 2010 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-20673371

RESUMEN

BACKGROUND: The self-fertile filamentous ascomycete Neurospora tetrasperma contains a large (approximately 7 Mbp) and young (< 6 MYA) region of suppressed recombination within its mating-type (mat) chromosomes. The objective of the present study is to reveal the evolutionary history, including key genomic events, associated with the various regions of the mat chromosomes among ten strains representing all the nine known species (lineages) contained within the N. tetrasperma species complex. RESULTS: Comparative analysis of sequence divergence among alleles of 24 mat-linked genes (mat A and mat a) indicates that a large region of suppressed recombination exists within the mat chromosome for each of nine lineages of N. tetrasperma sensu latu. The recombinationally suppressed region varies in size and gene composition among lineages, and is flanked on both ends by normally recombining regions. Genealogical analyses among lineages reveals that eight gene conversion events have occurred between homologous mat A and mat a-linked alleles of genes located within the region of restricted recombination during the evolutionary history of N. tetrasperma. CONCLUSIONS: We conclude that the region of suppressed recombination in the mat chromosomes has likely been subjected to independent contraction and/or expansion during the evolutionary history of the N. tetrasperma species complex. Furthermore, we infer that gene conversion events are likely a common phenomenon within this recombinationally suppressed genomic region. We argue that gene conversions might provide an efficient mechanism of adaptive editing of functional genes, including the removal of deleterious mutations, within the young recombinationally suppressed region of the mat chromosomes.


Asunto(s)
Cromosomas Fúngicos/genética , Evolución Molecular , Conversión Génica , Genes del Tipo Sexual de los Hongos , Neurospora/genética , Alelos , ADN de Hongos/genética , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN
12.
Plant Mol Biol ; 72(3): 279-99, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19949835

RESUMEN

Transcriptome data for plant reproductive organs/cells currently is very limited as compared to sporophytic tissues. Here, we constructed cDNA libraries and obtained ESTs for Brassica napus pollen (4,864 ESTs), microspores (i.e., early stage pollen development; 6,539 ESTs) and ovules (10,468 ESTs). Clustering and assembly of the 21,871 ESTs yielded a total of 10,782 unigenes, with 3,362 contigs and 7,420 singletons. The pollen transcriptome contained high levels of polygalacturonases and pectinesterases, which are involved in cell wall synthesis and expansion, and very few transcription factors or transcripts related to protein synthesis. The set of genes expressed in mature pollen showed little overlap with genes expressed in ovules or in microspores, suggesting in the latter case that a marked differentiation had occurred from the early microspore stages through to pollen development. Remarkably, the microspores and ovules exhibited a high number of co-expressed genes (N = 1,283) and very similar EST functional profiles, including high transcript numbers for transcriptional and translational processing genes, protein modification genes and unannotated genes. In addition, examination of expression values for genes co-expressed among microspores and ovules revealed a highly statistically significant correlation among these two tissues (R = 0.360, P = 1.2 x 10(-40)) as well as a lack of differentially expressed genes. Overall, the results provide new insights into the transcriptional profile of rarely studied ovules, the transcript changes during pollen development, transcriptional regulation of pollen tube growth and germination, and describe the parallels in the transcript populations of microspore and ovules which could have implications for understanding the molecular foundation of microspore totipotency in B. napus.


Asunto(s)
Brassica napus/genética , Óvulo Vegetal/genética , Polen/genética , ARN Mensajero/metabolismo , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Genoma de Planta , Germinación , Óvulo Vegetal/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo
13.
G3 (Bethesda) ; 10(3): 1125-1136, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31988160

RESUMEN

The faster-X effect, namely the rapid evolution of protein-coding genes on the X chromosome, has been widely reported in metazoans. However, the prevalence of this phenomenon across diverse systems and its potential causes remain largely unresolved. Analysis of sex-biased genes may elucidate its possible mechanisms: for example, in systems with X/Y males a more pronounced faster-X effect in male-biased genes than in female-biased or unbiased genes may suggest fixation of recessive beneficial mutations rather than genetic drift. Further, theory predicts that the faster-X effect should be promoted by X chromosome dosage compensation. Here, we asked whether we could detect a faster-X effect in genes of the beetle Tribolium castaneum (and T. freemani orthologs), which has X/Y sex-determination and heterogametic males. Our comparison of protein sequence divergence (dN/dS) on the X chromosome vs. autosomes indicated a rarely observed absence of a faster-X effect in this organism. Further, analyses of sex-biased gene expression revealed that the X chromosome was particularly highly enriched for ovary-biased genes, which evolved slowly. In addition, an evaluation of male X chromosome dosage compensation in the gonads and in non-gonadal somatic tissues indicated a striking lack of compensation in the testis. This under-expression in testis may limit fixation of recessive beneficial X-linked mutations in genes transcribed in these male sex organs. Taken together, these beetles provide an example of the absence of a faster-X effect on protein evolution in a metazoan, that may result from two plausible factors, strong constraint on abundant X-linked ovary-biased genes and a lack of gonadal dosage compensation.


Asunto(s)
Cromosomas de Insectos , Tribolium/genética , Cromosoma X , Animales , Femenino , Expresión Génica , Masculino , Ovario/metabolismo , RNA-Seq , Caracteres Sexuales , Testículo/metabolismo
14.
DNA Res ; 26(6): 473-484, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922535

RESUMEN

Synonymous codon use is non-random. Codons most used in highly transcribed genes, often called optimal codons, typically have high gene counts of matching tRNA genes (tRNA abundance) and promote accurate and/or efficient translation. Non-optimal codons, those least used in highly expressed genes, may also affect translation. In multicellular organisms, codon optimality may vary among tissues. At present, however, tissue specificity of codon use remains poorly understood. Here, we studied codon usage of genes highly transcribed in germ line (testis and ovary) and somatic tissues (gonadectomized males and females) of the beetle Tribolium castaneum. The results demonstrate that: (i) the majority of optimal codons were organism-wide, the same in all tissues, and had numerous matching tRNA gene copies (Opt-codon↑tRNAs), consistent with translational selection; (ii) some optimal codons varied among tissues, suggesting tissue-specific tRNA populations; (iii) wobble tRNA were required for translation of certain optimal codons (Opt-codonwobble), possibly allowing precise translation and/or protein folding; and (iv) remarkably, some non-optimal codons had abundant tRNA genes (Nonopt-codon↑tRNAs), and genes using those codons were tightly linked to ribosomal and stress-response functions. Thus, Nonopt-codon↑tRNAs codons may regulate translation of specific genes. Together, the evidence suggests that codon use and tRNA genes regulate multiple translational processes in T. castaneum.


Asunto(s)
Uso de Codones/genética , Codón/genética , Biosíntesis de Proteínas/genética , Tribolium/genética , Animales , Secuencia de Bases , Femenino , Regulación de la Expresión Génica , Masculino , Modelos Genéticos , Especificidad de Órganos , ARN de Transferencia/genética , Ribosomas/genética , Ribosomas/metabolismo , Selección Genética
15.
Genetics ; 206(4): 2119-2137, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28630112

RESUMEN

Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system (e.g., sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition.


Asunto(s)
Aedes/genética , Proteínas de Insectos/genética , Tasa de Mutación , Animales , Femenino , Proteínas de Insectos/metabolismo , Masculino , Sistemas de Lectura Abierta , Ovario/metabolismo , Selección Genética , Caracteres Sexuales , Testículo/metabolismo
16.
Genome Biol Evol ; 8(9): 2722-36, 2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27017527

RESUMEN

Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model.


Asunto(s)
Codón/genética , Proteínas de Insectos/genética , Arañas/genética , Animales , Evolución Molecular , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Selección Genética
17.
Nat Commun ; 7: 12637, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27577604

RESUMEN

Primordial germ cells (PGCs) give rise to the germ line in animals. PGCs are specified during embryogenesis either by an ancestral mechanism of cell-cell signalling (induction) or by a derived mechanism of maternally provided germ plasm (preformation). Recently, a hypothesis was set forth purporting that germ plasm liberates selective constraint and accelerates an organism's protein sequence evolution, especially for genes from early developmental stages, thereby leading to animal species radiations; empirical validation has been claimed in vertebrates. Here we present findings from global rates of protein evolution in vertebrates and invertebrates refuting this hypothesis. Contrary to assertions of the hypothesis, we find no effect of preformation on protein sequence evolution, the evolutionary rates of early-stage developmental genes, or on species diversification. We conclude that the hypothesis is mechanistically implausible, and our multi-faceted analysis shows no empirical support for any of its predictions.


Asunto(s)
Citoplasma/fisiología , Evolución Molecular , Células Germinativas/fisiología , Invertebrados/fisiología , Vertebrados/fisiología , Animales , Comunicación Celular/fisiología , Desarrollo Embrionario/fisiología , Perfilación de la Expresión Génica , Especiación Genética , Genómica , Invertebrados/embriología , Alineación de Secuencia , Factores de Tiempo , Vertebrados/embriología
18.
G3 (Bethesda) ; 5(11): 2307-21, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26384771

RESUMEN

In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods.


Asunto(s)
Artrópodos/genética , Codón/genética , Evolución Molecular , Selección Genética , Aminoácidos/genética , Animales , Proteínas de Artrópodos/genética
19.
Genetics ; 199(3): 809-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25567990

RESUMEN

The presence of large genomic regions with suppressed recombination (SR) is a key shared property of some sex- and mating-type determining (mat) chromosomes identified to date in animals, plants, and fungi. Why such regions form and how they evolve remain central questions in evolutionary genetics. The smut fungus Microbotryum lychnis-dioicae is a basidiomycete fungus in which dimorphic mat chromosomes have been reported, but the size, age, and evolutionary dynamics of the SR region remains unresolved. To identify the SR region in M. lychnis-dioicae and to study its evolution, we sequenced 12 genomes (6 per mating type) of this species and identified the genomic contigs that show fixed sequence differences between the mating types. We report that the SR region spans more than half of the mat chromosome (>2.3 Mbp) and that it is of very recent origin (∼2 × 10(6) years) as the average sequence divergence between mating types was only 2% in the SR region. This contrasts with a much higher divergence in and around the mating-type determining pheromone receptor locus in the SR, suggesting a recent and massive expansion of the SR region. Our results comprise the first reported case of recent massive SR expansion documented in a basidiomycete fungus.


Asunto(s)
Basidiomycota/genética , Cromosomas Fúngicos , Genes Fúngicos , Receptores del Factor de Conjugación/genética , Evolución Molecular , Recombinación Genética
20.
Plant Cell ; 21(8): 2203-19, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19706795

RESUMEN

The plant ribosome is composed of 80 distinct ribosomal (r)-proteins. In Arabidopsis thaliana, each r-protein is encoded by two or more highly similar paralogous genes, although only one copy of each r-protein is incorporated into the ribosome. Brassica napus is especially suited to the comparative study of r-protein gene paralogs due to its documented history of genome duplication as well as the recent availability of large EST data sets. We have identified 996 putative r-protein genes spanning 79 distinct r-proteins in B. napus using EST data from 16 tissue collections. A total of 23,408 tissue-specific r-protein ESTs are associated with this gene set. Comparative analysis of the transcript levels for these unigenes reveals that a large fraction of r-protein genes are differentially expressed and that the number of paralogs expressed for each r-protein varies extensively with tissue type in B. napus. In addition, in many cases the paralogous genes for a specific r-protein are not transcribed in concert and have highly contrasting expression patterns among tissues. Thus, each tissue examined has a novel r-protein transcript population. Furthermore, hierarchical clustering reveals that particular paralogs for nonhomologous r-protein genes cluster together, suggesting that r-protein paralog combinations are associated with specific tissues in B. napus and, thus, may contribute to tissue differentiation and/or specialization. Altogether, the data suggest that duplicated r-protein genes undergo functional divergence into highly specialized paralogs and coexpression networks and that, similar to recent reports for yeast, these are likely actively involved in differentiation, development, and/or tissue-specific processes.


Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas Ribosómicas/fisiología , Etiquetas de Secuencia Expresada , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA