RESUMEN
Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, â¼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.
Asunto(s)
Músculo Esquelético/fisiopatología , Cadenas Ligeras de Miosina/genética , Miotonía Congénita/genética , Alelos , Animales , Consanguinidad , Modelos Animales de Enfermedad , Exoma/genética , Homocigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Mutación , Cadenas Pesadas de Miosina/genética , Miotonía Congénita/fisiopatología , Linaje , Pez Cebra/genéticaRESUMEN
Phosphoinositides are small phospholipids that control diverse cellular downstream signaling events. Their spatial and temporal availability is tightly regulated by a set of specific lipid kinases and phosphatases. Congenital muscular dystrophies are hereditary disorders characterized by hypotonia and weakness from birth with variable eye and central nervous system involvement. In individuals exhibiting congenital muscular dystrophy, early-onset cataracts, and mild intellectual disability but normal cranial magnetic resonance imaging, we identified bi-allelic mutations in INPP5K, encoding inositol polyphosphate-5-phosphatase K. Mutations impaired phosphatase activity toward the phosphoinositide phosphatidylinositol (4,5)-bisphosphate or altered the subcellular localization of INPP5K. Downregulation of INPP5K orthologs in zebrafish embryos disrupted muscle fiber morphology and resulted in abnormal eye development. These data link congenital muscular dystrophies to defective phosphoinositide 5-phosphatase activity that is becoming increasingly recognized for its role in mediating pivotal cellular mechanisms contributing to disease.
Asunto(s)
Catarata/genética , Disfunción Cognitiva/genética , Distrofia Muscular de Cinturas/genética , Anomalías Musculoesqueléticas/genética , Monoéster Fosfórico Hidrolasas/genética , Adolescente , Adulto , Alelos , Animales , Encéfalo/patología , Niño , Preescolar , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/patología , Mutación , Linaje , Adulto Joven , Pez Cebra/embriología , Pez Cebra/genéticaRESUMEN
Autosomal recessive mutations in the ECEL1 gene have recently been associated with a wide phenotypic spectrum including severe congenital contractural syndromes and distal arthrogryposis type 5D (DA5D). Here, we describe four novel families with ECEL1 gene mutations, reporting 15 years of follow-up for four patients and detailed muscle pathological description for three individuals. In particular, we observed mild myopathic features, prominent core-like areas in one individual, and presence of nCAM positive fibres in three patients from 2 unrelated families suggesting a possible problem with innervation. Our findings expand current knowledge concerning the phenotypic and pathological spectrum associated with ECEL1 gene mutations and may suggest novel insights regarding the underlying pathomechanism of the disease.
Asunto(s)
Artrogriposis/genética , Metaloendopeptidasas/genética , Músculo Esquelético/diagnóstico por imagen , Mutación , Adolescente , Artrogriposis/diagnóstico por imagen , Niño , Consanguinidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Linaje , Fenotipo , Síndrome , Adulto JovenRESUMEN
Mitochondrial Ca(2+) uptake has key roles in cell life and death. Physiological Ca(2+) signaling regulates aerobic metabolism, whereas pathological Ca(2+) overload triggers cell death. Mitochondrial Ca(2+) uptake is mediated by the Ca(2+) uniporter complex in the inner mitochondrial membrane, which comprises MCU, a Ca(2+)-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca(2+) uptake at low cytosolic Ca(2+) concentrations was increased, and cytosolic Ca(2+) signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy and the core myopathies involves abnormal mitochondrial Ca(2+) handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca(2+) signaling, demonstrating the crucial role of mitochondrial Ca(2+) uptake in humans.
Asunto(s)
Señalización del Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Discapacidades para el Aprendizaje/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Trastornos del Movimiento/genética , Enfermedades Musculares/genética , Fenotipo , Análisis de Varianza , Secuencia de Bases , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , ADN Complementario/genética , Exoma/genética , Tractos Extrapiramidales/patología , Técnica del Anticuerpo Fluorescente , Técnicas Histológicas , Humanos , Inmunohistoquímica , Potencial de la Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple/genética , Músculo Cuádriceps/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADNRESUMEN
Phosphorylated O-mannosyl trisaccharide [N-acetylgalactosamine-ß3-N-acetylglucosamine-ß4-(phosphate-6-)mannose] is required for dystroglycan to bind laminin-G domain-containing extracellular proteins with high affinity in muscle and brain. However, the enzymes that produce this structure have not been fully elucidated. We found that glycosyltransferase-like domain-containing 2 (GTDC2) is a protein O-linked mannose ß 1,4-N-acetylglucosaminyltransferase whose product could be extended by ß 1,3-N-acetylgalactosaminyltransferase2 (B3GALNT2) to form the O-mannosyl trisaccharide. Furthermore, we identified SGK196 as an atypical kinase that phosphorylated the 6-position of O-mannose, specifically after the mannose had been modified by both GTDC2 and B3GALNT2. These findings suggest how mutations in GTDC2, B3GALNT2, and SGK196 disrupt dystroglycan receptor function and lead to congenital muscular dystrophy.