Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 660, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124058

RESUMEN

BACKGROUND: Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS: We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION: Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.


Asunto(s)
Droseraceae , Genoma de Plastidios , Lamiales , Magnoliopsida , Humanos , Magnoliopsida/genética , Carnivoría , Lamiales/genética , Droseraceae/genética , Filogenia , Evolución Molecular
2.
J Exp Bot ; 74(17): 5294-5306, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37260405

RESUMEN

Genetic underpinnings of host-pathogen interactions in the parasitic plant Striga hermonthica, a root parasitic plant that ravages cereals in sub-Saharan Africa, are unclear. We performed a comparative transcriptome study on five genotypes of sorghum exhibiting diverse resistance responses to S. hermonthica using weighted gene co-expression network analysis (WGCNA). We found that S. hermonthica elicits both basal and effector-triggered immunity-like a bona fide pathogen. The resistance response was genotype specific. Some resistance responses followed the salicylic acid-dependent signaling pathway for systemic acquired resistance characterized by cell wall reinforcements, lignification, and callose deposition, while in others the WRKY-dependent signaling pathway was activated, leading to a hypersensitive response. In some genotypes, both modes of resistance were activated, while in others either mode dominated the resistance response. Cell wall-based resistance was common to all sorghum genotypes but strongest in IS2814, while a hypersensitive response was specific to N13, IS9830, and IS41724. WGCNA further allowed for pinpointing of S. hermonthica resistance causative genes in sorghum, including glucan synthase-like 10 gene, a pathogenesis-related thaumatin-like family gene, and a phosphoinositide phosphatase gene. Such candidate genes will form a good basis for subsequent functional validation and possibly future resistance breeding.


Asunto(s)
Sorghum , Striga , Sorghum/genética , Sorghum/metabolismo , Striga/genética , Grano Comestible , Fitomejoramiento , África del Sur del Sahara
3.
Plant Physiol ; 185(4): 1374-1380, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793906

RESUMEN

The lifestyle of parasitic plants is associated with peculiar morphological, genetic, and physiological adaptations that existing online plant-specific resources fail to adequately represent. Here, we introduce the Web Application for the Research of Parasitic Plants (WARPP) as an online resource dedicated to advancing research and development of parasitic plant biology. WARPP is a framework to facilitate international efforts by providing a central hub of curated evolutionary, ecological, and genetic data. The first version of WARPP provides a community hub for researchers to test this web application, for which curated data revolving around the economically important Broomrape family (Orobanchaceae) is readily accessible. The initial set of WARPP online tools includes a genome browser that centralizes genomic information for sequenced parasitic plant genomes, an orthogroup summary detailing the presence and absence of orthologous genes in parasites compared with nonparasitic plants, and an ancestral trait explorer showing the evolution of life-history preferences along phylogenies. WARPP represents a project under active development and relies on the scientific community to populate the web app's database and further the development of new analysis tools. The first version of WARPP can be securely accessed at https://parasiticplants.app. The source code is licensed under GNU GPLv2 and is available at https://github.com/wickeLab/WARPP.


Asunto(s)
Secuencia de Bases , Genoma de Planta , Orobanchaceae/genética , Orobanchaceae/fisiología , Orobanchaceae/parasitología , Filogenia , Navegador Web , Genómica , Programas Informáticos
4.
J Biol Chem ; 295(1): 170-180, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31776187

RESUMEN

Calcium (Ca2+) and redox signaling enable cells to quickly adapt to changing environments. The signaling protein calredoxin (CRX) from the green alga Chlamydomonas reinhardtii is a chloroplast-resident thioredoxin having Ca2+-dependent activity and harboring a unique combination of an EF-hand domain connected to a typical thioredoxin-fold. Using small-angle X-ray scattering (SAXS), FRET, and NMR techniques, we found that Ca2+-binding not only induces a conformational change in the EF-hand domain, but also in the thioredoxin domain, translating into the onset of thioredoxin redox activity. Functional analyses of CRX with genetically altered EF-hands revealed that EF-hand 4 is important for mediating the communication between the two domains. Moreover, we crystallized a variant (C174S) of the CRX target protein peroxiredoxin 1 (PRX1) at 2.4 Å resolution, modeled the interaction complex of the two proteins, and analyzed it by cross-linking and MS analyses, revealing that the interaction interface is located close to the active sites of both proteins. Our findings shed light on the Ca2+ binding-induced changes in CRX structure in solution at the level of the overall protein and individual domains and residues.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Tiorredoxinas en Cloroplasto/metabolismo , Motivos EF Hand , Proteínas de Unión al Calcio/química , Chlamydomonas reinhardtii , Tiorredoxinas en Cloroplasto/química , Simulación de Dinámica Molecular , Unión Proteica
5.
Glob Chang Biol ; 27(1): 94-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33067869

RESUMEN

Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.


Asunto(s)
Infecciones por Cestodos , Enfermedades de los Peces , Parásitos , Smegmamorpha , Animales , Cambio Climático , Interacciones Huésped-Parásitos , Temperatura
6.
Mol Phylogenet Evol ; 131: 106-115, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30399429

RESUMEN

Besides their alleged therapeutic effects, mistletoes of the genus Viscum L. (Viscaceae) are keystone species in many ecosystems across Europe, Africa, Asia and Australia because of their complex faunal interactions. We here reconstructed the evolutionary history of Viscum based on plastid and nuclear DNA sequence data. We obtained a highly resolved phylogenetic tree with ten well-supported clades, which we used to understand the spatio-temporal evolution of these aerial parasites and evaluate the contribution of reproductive switches and shifts in host ranges to their distribution and diversification. The genus Viscum originated in the early Eocene in Africa and appeared to have diversified mainly through geographic isolation, in several cases apparently coinciding with shifts in host preferences. During its evolution, switches in the reproductive mode from ancestral dioecy to monoecy imply an important role in the long-distance dispersal of the parasites from Africa to continental Asia and Australia. We also observed multiple cases of photosynthetic surface reduction (evolution of scale leaves) within the genus, probably indicative of increasing specialization associated with the parasitic lifestyle. Even compared with other parasitic angiosperms, where more host generalists than specialists exist, Viscum species are characterized by extraordinarily broad host ranges. Specialization on only a few hosts from a single family or order occurs rarely and is restricted mostly to very recently evolved lineages. The latter mostly derive from or are closely related to generalist parasites, implying that niche shifting to a new host represents an at least temporary evolutionary advantage in Viscum.


Asunto(s)
Geografía , Especificidad del Huésped , Muérdago/anatomía & histología , Muérdago/clasificación , Filogenia , Viscum/anatomía & histología , Viscum/clasificación , Evolución Biológica , Muérdago/crecimiento & desarrollo , Filogeografía , Hojas de la Planta/fisiología , Viscum/crecimiento & desarrollo
7.
Nucleic Acids Res ; 45(W1): W260-W264, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28453644

RESUMEN

Understanding species adaptation at the molecular level has been a central goal of evolutionary biology and genomics research. This important task becomes increasingly relevant with the constant rise in both genotypic and phenotypic data availabilities. The TraitRateProp web server offers a unique perspective into this task by allowing the detection of associations between sequence evolution rate and whole-organism phenotypes. By analyzing sequences and phenotypes of extant species in the context of their phylogeny, it identifies sequence sites in a gene/protein whose evolutionary rate is associated with shifts in the phenotype. To this end, it considers alternative histories of whole-organism phenotypic changes, which result in the extant phenotypic states. Its joint likelihood framework that combines models of sequence and phenotype evolution allows testing whether an association between these processes exists. In addition to predicting sequence sites most likely to be associated with the phenotypic trait, the server can optionally integrate structural 3D information. This integration allows a visual detection of trait-associated sequence sites that are juxtapose in 3D space, thereby suggesting a common functional role. We used TraitRateProp to study the shifts in sequence evolution rate of the RPS8 protein upon transitions into heterotrophy in Orchidaceae. TraitRateProp is available at http://traitrate.tau.ac.il/prop.


Asunto(s)
Evolución Molecular , Análisis de Secuencia , Programas Informáticos , Algoritmos , Internet , Orchidaceae/genética , Fenotipo , Filogenia , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética
8.
Proc Natl Acad Sci U S A ; 113(32): 9045-50, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27450087

RESUMEN

Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite's dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids.


Asunto(s)
Evolución Molecular , Plantas/genética , Genoma de Plastidios , Enfermedades Parasitarias/genética , Fotosíntesis , Filogenia , Plastidios/metabolismo , Selección Genética
9.
New Phytol ; 218(3): 1192-1204, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29502351

RESUMEN

Heterotrophic plants provide excellent opportunities to study the effects of altered selective regimes on genome evolution. Plastid genome (plastome) studies in heterotrophic plants are often based on one or a few highly divergent species or sequences as representatives of an entire lineage, thus missing important evolutionary-transitory events. Here, we present the first infraspecific analysis of plastome evolution in any heterotrophic plant. By combining genome skimming and targeted sequence capture, we address hypotheses on the degree and rate of plastome degradation in a complex of leafless orchids (Corallorhiza striata) across its geographic range. Plastomes provide strong support for relationships and evidence of reciprocal monophyly between C. involuta and the endangered C. bentleyi. Plastome degradation is extensive, occurring rapidly over a few million years, with evidence of differing rates of genomic change among the two principal clades of the complex. Genome skimming and targeted sequence capture differ widely in coverage depth overall, with depth in targeted sequence capture datasets varying immensely across the plastome as a function of GC content. These findings will help to fill a knowledge gap in models of heterotrophic plastid genome evolution, and have implications for future studies in heterotrophs.


Asunto(s)
Genoma de Plastidios , Procesos Heterotróficos , Orchidaceae/genética , Secuencia de Bases , Geografía , Funciones de Verosimilitud , América del Norte , Filogenia , Seudogenes , Especificidad de la Especie , Factores de Tiempo
10.
Syst Biol ; 66(6): 917-933, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177510

RESUMEN

Recent years have seen a constant rise in the availability of trait data, including morphological features, ecological preferences, and life history characteristics. These phenotypic data provide means to associate genomic regions with phenotypic attributes, thus allowing the identification of phenotypic traits associated with the rate of genome and sequence evolution. However, inference methodologies that analyze sequence and phenotypic data in a unified statistical framework are still scarce. Here, we present TraitRateProp, a probabilistic method that allows testing whether the rate of sequence evolution is associated with a binary phenotypic character trait. The method further allows the detection of specific sequence sites whose evolutionary rate is most noticeably affected following the character transition, suggesting a shift in functional/structural constraints. TraitRateProp is first evaluated in simulations and then applied to study the evolutionary process of plastid plant genomes upon a transition to a heterotrophic lifestyle. To this end, we analyze 20 plastid genes across 85 orchid species, spanning different lifestyles and representing different genera in this large family of flowering plants. Our results indicate higher evolutionary rates following repeated transitions to a heterotrophic lifestyle in all but four of the loci analyzed. [Evolutionary models; evolutionary rate; genotype-phenotype; orchids; plastome; rate shift.].


Asunto(s)
Clasificación/métodos , Evolución Molecular , Genoma de Planta/genética , Modelos Genéticos , Simulación por Computador , Genoma de Plastidios/genética , Fenotipo
12.
New Phytol ; 210(2): 680-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26671255

RESUMEN

Plastid genomes (plastomes) of nonphotosynthetic plants experience extensive gene losses and an acceleration of molecular evolutionary rates. Here, we inferred the mechanisms and timing of reductive genome evolution under relaxed selection in the broomrape family (Orobanchaceae). We analyzed the plastomes of several parasites with a major focus on the genus Orobanche using genome-descriptive and Bayesian phylogenetic-comparative methods. Besides this, we scanned the parasites' other cellular genomes to trace the fate of all genes that were purged from their plastomes. Our analyses indicate that the first functional gene losses occurred within 10 Myr of the transition to obligate parasitism in Orobanchaceae, and that the physical plastome reduction proceeds by small deletions that accumulate over time. Evolutionary rate shifts coincide with the genomic reduction process in broomrapes, suggesting that the shift of selectional constraints away from photosynthesis to other molecular processes alters the plastid rate equilibrium. Most of the photosynthesis-related genes or fragments of genes lost from the plastomes of broomrapes have survived in their nuclear or mitochondrial genomes as the results of multiple intracellular transfers and subsequent fragmentation. Our findings indicate that nonessential DNA is eliminated much faster in the plastomes of nonphotosynthetic parasites than in their other cellular genomes.


Asunto(s)
Técnicas de Transferencia de Gen , Genoma de Plastidios , Espacio Intracelular/metabolismo , Orobanchaceae/genética , Teorema de Bayes , Evolución Biológica , Núcleo Celular/genética , Genes de Plantas , Mitocondrias/genética , Nucleótidos/genética , Filogenia , Probabilidad , Seudogenes , Selección Genética
13.
Plant Cell ; 25(10): 3711-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24143802

RESUMEN

Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.


Asunto(s)
Evolución Biológica , Eliminación de Gen , Genoma del Cloroplasto , Genoma de Planta , Orobanchaceae/genética , Fotosíntesis/genética , Composición de Base , Teorema de Bayes , Hibridación Genómica Comparativa , Reordenamiento Génico , Genes Esenciales , Modelos Genéticos , Sistemas de Lectura Abierta , Orobanchaceae/fisiología , Filogenia , Mapeo Físico de Cromosoma , Secuencias Repetitivas de Ácidos Nucleicos , Selección Genética , Análisis de Secuencia de ADN
15.
Mol Biol Evol ; 31(3): 529-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24344209

RESUMEN

Carnivorous Lentibulariaceae exhibit the most sophisticated implementation of the carnivorous syndrome in plants. Their unusual lifestyle coincides with distinct genomic peculiarities such as the smallest angiosperm nuclear genomes and extremely high nucleotide substitution rates across all genomic compartments. Here, we report the complete plastid genomes from each of the three genera Pinguicula, Utricularia, and Genlisea, and investigate plastome-wide changes in their molecular evolution as the carnivorous syndrome unfolds. We observe a size reduction by up to 9% mostly due to the independent loss of genes for the plastid NAD(P)H dehydrogenase and altered proportions of plastid repeat DNA, as well as a significant plastome-wide increase of substitution rates and microstructural changes. Protein-coding genes across all gene classes show a disproportional elevation of nonsynonymous substitutions, particularly in Utricularia and Genlisea. Significant relaxation of purifying selection relative to noncarnivores occurs in the plastid-encoded fraction of the photosynthesis ATP synthase complex, the photosystem I, and in several other photosynthesis and metabolic genes. Shifts in selective regimes also affect housekeeping genes including the plastid-encoded polymerase, for which evidence for relaxed purifying selection was found once during the transition to carnivory, and a second time during the diversification of the family. Lentibulariaceae significantly exhibit enhanced rates of nucleotide substitution in most of the 130 noncoding regions. Various factors may underlie the observed patterns of relaxation of purifying selection and substitution rate increases, such as reduced net photosynthesis rates, alternative paths of nutrient uptake (including organic carbon), and impaired DNA repair mechanisms.


Asunto(s)
Sustitución de Aminoácidos/genética , Genes de Plantas/genética , Genoma de Plastidios/genética , Magnoliopsida/genética , Selección Genética , Carnivoría , ADN Intergénico/genética , Evolución Molecular , Mutación INDEL/genética , Funciones de Verosimilitud , Mapeo Físico de Cromosoma , Secuencias Repetitivas de Ácidos Nucleicos/genética
16.
BMC Plant Biol ; 15: 98, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25886741

RESUMEN

BACKGROUND: Plants colonized terrestrial environments approximately 480 million years ago and have contributed significantly to the diversification of life on Earth. Phylogenetic analyses position a subset of charophyte algae as the sister group to land plants, and distinguish two land plant groups that diverged around 450 million years ago - the bryophytes and the vascular plants. Relationships between liverworts, mosses hornworts and vascular plants have proven difficult to resolve, and as such it is not clear which bryophyte lineage is the sister group to all other land plants and which is the sister to vascular plants. The lack of comparative molecular studies in representatives of all three lineages exacerbates this uncertainty. Such comparisons can be made between mosses and liverworts because representative model organisms are well established in these two bryophyte lineages. To date, however, a model hornwort species has not been available. RESULTS: Here we report the establishment of Anthoceros agrestis as a model hornwort species for laboratory experiments. Axenic culture conditions for maintenance and vegetative propagation have been determined, and treatments for the induction of sexual reproduction and sporophyte development have been established. In addition, protocols have been developed for the extraction of DNA and RNA that is of a quality suitable for molecular analyses. Analysis of haploid-derived genome sequence data of two A. agrestis isolates revealed single nucleotide polymorphisms at multiple loci, and thus these two strains are suitable starting material for classical genetic and mapping experiments. CONCLUSIONS: Methods and resources have been developed to enable A. agrestis to be used as a model species for developmental, molecular, genomic, and genetic studies. This advance provides an unprecedented opportunity to investigate the biology of hornworts.


Asunto(s)
Anthocerotophyta/crecimiento & desarrollo , Anthocerotophyta/genética , Cultivo Axénico/métodos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
17.
Elife ; 132024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363119

RESUMEN

The mitochondrial genomes of apicomplexans comprise merely three protein-coding genes, alongside a set of thirty to forty genes encoding small RNAs (sRNAs), many of which exhibit homologies to rRNA from E. coli. The expression status and integration of these short RNAs into ribosomes remains unclear and direct evidence for active ribosomes within apicomplexan mitochondria is still lacking. In this study, we conducted small RNA sequencing on the apicomplexan Toxoplasma gondii to investigate the occurrence and function of mitochondrial sRNAs. To enhance the analysis of sRNA sequencing outcomes, we also re-sequenced the T. gondii mitochondrial genome using an improved organelle enrichment protocol and Nanopore sequencing. It has been established previously that the T. gondii genome comprises 21 sequence blocks that undergo recombination among themselves but that their order is not entirely random. The enhanced coverage of the mitochondrial genome allowed us to characterize block combinations at increased resolution. Employing this refined genome for sRNA mapping, we find that many small RNAs originated from the junction sites between protein-coding blocks and rRNA sequence blocks. Surprisingly, such block border sRNAs were incorporated into polysomes together with canonical rRNA fragments and mRNAs. In conclusion, apicomplexan ribosomes are active within polysomes and are indeed assembled through the integration of sRNAs, including previously undetected sRNAs with merged mRNA-rRNA sequences. Our findings lead to the hypothesis that T. gondii's block-based genome organization enables the dual utilization of mitochondrial sequences as both messenger RNAs and ribosomal RNAs, potentially establishing a link between the regulation of rRNA and mRNA expression.


Asunto(s)
Genoma Mitocondrial , ARN Pequeño no Traducido , Ribosomas Mitocondriales/metabolismo , Escherichia coli/genética , ARN Ribosómico/metabolismo , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Recombinación Genética
18.
Appl Plant Sci ; 10(2): e11456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495192

RESUMEN

Premise: A detailed protocol for the protoplast transformation of hornwort tissue is not yet available, limiting molecular biological investigations of these plants and comparative analyses with other bryophytes, which display a gametophyte-dominant life cycle and are critical to understanding the evolution of key land plant traits. Methods and Results: We describe a detailed protocol to isolate and transiently transform protoplasts of the model hornwort Anthoceros agrestis. The digestion of liquid cultures with Driselase yields a high number of viable protoplasts suitable for polyethylene glycol (PEG)-mediated transformation. We also report early signs of protoplast regeneration, such as chloroplast division and cell wall reconstitution. Conclusions: This protocol represents a straightforward method for isolating and transforming A. agrestis protoplasts that is less laborious than previously described approaches. In combination with the recently developed stable genome transformation technique, this work further expands the prospects of functional studies in this model hornwort.

19.
Plant Mol Biol ; 76(3-5): 273-97, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21424877

RESUMEN

This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Genes de Plantas , Plastidios/genética
20.
Mol Phylogenet Evol ; 61(2): 321-32, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21757016

RESUMEN

Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S rRNA gene copies are discussed.


Asunto(s)
ADN de Plantas/genética , Evolución Molecular , ARN Ribosómico 5S/genética , Streptophyta/genética , Secuencia de Bases , Secuencia de Consenso , Elementos Transponibles de ADN , ADN Espaciador Ribosómico/genética , Ligamiento Genético , Datos de Secuencia Molecular , Familia de Multigenes , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Streptophyta/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA