Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 44(18): 8655-8670, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27325688

RESUMEN

The estrogen receptor α (ERα) is a transcription factor that can be directly activated by estrogen or indirectly by other signaling pathways. We previously reported that activation of the unliganded ERα by cAMP is mediated by phosphorylation of the transcriptional coactivator CARM1 by protein kinase A (PKA), allowing CARM1 to bind ERα directly. This being insufficient by itself to activate ERα, we looked for additional factors and identified the histone H3 demethylase LSD1 as a substrate of PKA and an important mediator of this signaling crosstalk as well as of the response to estrogen. Surprisingly, ERα engages not only LSD1, but its partners of the CoREST corepressor complex and the molecular chaperone Hsp90. The recruitment of Hsp90 to promote ERα transcriptional activity runs against the steroid receptor paradigm and suggests that it might be involved as an assembly factor or scaffold. In a breast cancer cell line, which is resistant to the anti-estrogen tamoxifen because of constitutively activated PKA, some interactions are constitutive and drug combinations partially rescue tamoxifen sensitivity. In ERα-positive breast cancer patients, high expression of the genes encoding some of these factors correlates with poor prognosis. Thus, these mechanisms might contribute to ERα-driven breast cancer.


Asunto(s)
Proteínas Co-Represoras/metabolismo , AMP Cíclico/farmacología , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Histona Demetilasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ligandos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Pronóstico , Proteína-Arginina N-Metiltransferasas/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Resultado del Tratamiento
2.
Elife ; 122023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059913

RESUMEN

Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Mamíferos/metabolismo
3.
Sports Biomech ; 11(1): 57-72, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22518945

RESUMEN

Wrist injuries are frequently observed after falls in snowboarding. In this study, laboratory experiments mimicking forward and backward falls were analysed. In six different falling scenarios, participants self-initiated falls from a static initial position. Eighteen volunteers conducted a total of 741 trials. Measurements were taken for basic parameters describing the kinematics as well as the biomechanical loading during impact, such as impact force, impact acceleration, and velocity. The effective mass affecting the wrist in a fall also was determined. The elbow angle at impact showed a more extended arm in backward falls compared to forward falls, whereas the wrist angle at impact remained similar in forward and backward falls. The study results suggest a new performance standard for wrist guards, indicating the following parameters to characterize an impact: an effective mass acting on one wrist of 3-5 kg, an impact angle of 75 degrees of the forearm relative to the ground, and an impact velocity of 3 m/s.


Asunto(s)
Accidentes por Caídas , Traumatismos en Atletas/etiología , Esquí , Traumatismos de la Muñeca/etiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Adulto Joven
4.
Nat Commun ; 13(1): 6271, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270993

RESUMEN

The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life. Although reduced Hsp90 levels correlate with aging, it was unknown whether eukaryotic cells and organisms can tune the basal Hsp90 levels to alleviate physiologically accumulated stress. We have investigated whether and how mice adapt to the deletion of three out of four alleles of the two genes encoding cytosolic Hsp90, with one Hsp90ß allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90ß protein to at least wild-type levels. Our studies reveal an internal ribosome entry site in the 5' untranslated region of the Hsp90ß mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We find that the minimum amount of total Hsp90 required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have markedly increased during eukaryotic evolution.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Sitios Internos de Entrada al Ribosoma , Ratones , Animales , Regiones no Traducidas 5'/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , ARN Mensajero/genética , Mamíferos/genética
5.
Nat Commun ; 11(1): 5975, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239621

RESUMEN

Hop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function. Human cell lines and the budding yeast with deletions of the Hop/Sti1 gene display reduced proteasome activity due to inefficient capping of the core particle with regulatory particles. Unexpectedly, knock-out cells are more proficient at preventing protein aggregation and at promoting protein refolding. Without the restraint by Hop, a more efficient folding activity of the prokaryote-like Hsp70-Hsp90 complex, which can also be demonstrated in vitro, compensates for the proteasomal defect and ensures the proteostatic equilibrium. Thus, cells may act on the level and/or activity of Hop to shift the proteostatic balance between folding and degradation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Células A549 , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteolisis , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Biochem Parasitol ; 164(2): 147-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19320098

RESUMEN

Developing novel drugs against the unicellular parasite Plasmodium is complicated by the paucity of simple screening systems. Heat-shock proteins are an essential class of proteins for the parasite's cyclical life style between different cellular milieus and temperatures. The molecular chaperone Hsp90 assists a large variety of proteins, but its supporting functions for many proteins that are important for cancer have made it into a well-studied drug target. With a better understanding of the differences between Hsp90 and of the malarial parasite and Hsp90 of its human host, new therapeutic options might become available. We have generated a set of isogenic strains of the budding yeast Saccharomyces cerevisiae where the essential yeast Hsp90 proteins have been replaced with either of the two human cytosolic isoforms Hsp90alpha or Hsp90beta, or with Hsp90 from Plasmodium falciparum (Pf). All strains express large amounts of the Flag-tagged Hsp90 proteins and are viable. Even though the strain with Pf Hsp90 grows more poorly, it provides a tool to reconstitute additional aspects of the parasite Hsp90 complex and its interactions with substrates in yeast as a living test tube. Upon exposure of the set of Hsp90 test strains to the two Hsp90 inhibitors radicicol (Rd) and geldanamycin (GA), we found that the strain with Pf Hsp90 is relatively more sensitive to GA than to Rd compared to the strains with human Hsp90's. This indicates that this set of yeast strains could be used to screen for new Pf Hsp90 inhibitors with a wider therapeutic window.


Asunto(s)
Prueba de Complementación Genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Animales , Benzoquinonas/farmacología , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Genes Esenciales , Proteínas HSP90 de Choque Térmico/genética , Humanos , Lactamas Macrocíclicas/farmacología , Macrólidos/farmacología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS One ; 12(12): e0189403, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29220385

RESUMEN

The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits.


Asunto(s)
Arecaceae/enzimología , Luciferasas/metabolismo , Proteínas Luminiscentes/química , Genes Reporteros , Activación Transcripcional , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA