Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Phys Rev Lett ; 121(9): 095002, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30230893

RESUMEN

We report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum.

2.
Phys Rev Lett ; 112(10): 105003, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679301

RESUMEN

Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.

3.
Phys Rev Lett ; 112(22): 225002, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24949774

RESUMEN

A 200 µm radius hot spot at more than 2 keV temperature, 1 g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.

4.
Phys Rev Lett ; 112(18): 185003, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856703

RESUMEN

Ignition experiments have shown an anomalous susceptibility to hydrodynamic instability growth. To help understand these results, the first hydrodynamic instability growth measurements in indirectly driven implosions on the National Ignition Facility were performed at ignition conditions with peak radiation temperatures up to ∼300 eV. Plastic capsules with two-dimensional preimposed, sinusoidal outer surface modulations of initial wavelengths of 240 (corresponding to a Legendre mode number of 30), 120 (mode 60), and 80 µm (mode 90) were imploded by using actual low-adiabat ignition laser pulses. The measured growth was in excellent agreement, validating 2D hydra simulations for the most dangerous modes in the acceleration phase. These results reinforce confidence in the predictive capability of calculations that are paramount to illuminating the path toward ignition.

5.
Phys Rev Lett ; 112(2): 025002, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484021

RESUMEN

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

6.
Phys Rev Lett ; 111(23): 235001, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476279

RESUMEN

On the National Ignition Facility, the hohlraum-driven implosion symmetry is tuned using cross-beam energy transfer (CBET) during peak power, which is controlled by applying a wavelength separation between cones of laser beams. In this Letter, we present early-time measurements of the instantaneous soft x-ray drive at the capsule using reemission spheres, which show that this wavelength separation also leads to significant CBET during the first shock, even though the laser intensities are 30× smaller than during the peak. We demonstrate that the resulting early drive P2/P0 asymmetry can be minimized and tuned to <1% accuracy (well within the ±7.5% requirement for ignition) by varying the relative input powers between different cones of beams. These experiments also provide time-resolved measurements of CBET during the first 2 ns of the laser drive, which are in good agreement with radiation-hydrodynamics calculations including a linear CBET model.

7.
Phys Rev Lett ; 108(21): 215004, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003273

RESUMEN

Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.

8.
Rev Sci Instrum ; 93(9): 093517, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182496

RESUMEN

K-shell x-ray emission spectroscopy is a standard tool used to diagnose the plasma conditions created in high-energy-density physics experiments. In the simplest approach, the emissivity-weighted average temperature of the plasma can be extracted by fitting an emission spectrum to a single temperature condition. It is known, however, that a range of plasma conditions can contribute to the measured spectra due to a combination of the evolution of the sample and spatial gradients. In this work, we define a parameterized model of the temperature distribution and use Markov Chain Monte Carlo sampling of the input parameters, yielding uncertainties in the fit parameters to assess the uniqueness of the inferred temperature distribution. We present the analysis of time-integrated S and Fe x-ray spectroscopic data from the Orion laser facility and demonstrate that while fitting each spectral region to a single temperature yields two different temperatures, both spectra can be fit simultaneously with a single temperature distribution. We find that fitting both spectral regions together requires a maximum temperature of 1310-70 +90 eV with significant contributions from temperatures down to 200 eV.

9.
Phys Rev Lett ; 106(8): 085003, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21405579

RESUMEN

The first soft x-ray radiation flux measurements from hohlraums using both a 96 and a 192 beam configuration at the National Ignition Facility have shown high x-ray conversion efficiencies of ∼85%-90%. These experiments employed gold vacuum hohlraums, 6.4 mm long and 3.55 mm in diameter, heated with laser energies between 150-635 kJ. The hohlraums reached radiation temperatures of up to 340 eV. These hohlraums for the first time reached coronal plasma conditions sufficient for two-electron processes and coronal heat conduction to be important for determining the radiation drive.

10.
Rev Sci Instrum ; 92(3): 033505, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820103

RESUMEN

DANTE is a diagnostic used to measure the x-radiation drive produced by heating a high-Z cavity ("hohlraum") with high-powered laser beams. It records the spectrally and temporally resolved radiation flux at x-ray energies between 50 eV and 20 keV. Each sensor configuration on DANTE is composed of filters, mirrors, and x-ray diodes to define 18 different x-ray channels whose output is voltage as a function of time. The absolute flux is then determined from the photometric calibration of the sensor configuration and a spectral reconstructing algorithm. The reconstruction of the spectra vs time from the measured voltages and known response of each channel has presented challenges. We demonstrate a novel approach here for quantifying the error on the determined flux based on the channel sensor configuration and most commonly used reconstruction algorithm. In general, we find that the integrated spectral flux from a hohlraum can robustly be reconstructed (within ∼14%) using a traditional unfold approach with as few as ten channels due to the underlying assumption of a largely Planckian spectral intensity distribution.

11.
Rev Sci Instrum ; 92(2): 023509, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648146

RESUMEN

We present absolute throughput analysis of several crystals for the Orion High-REsolution X-ray (OHREX) imaging crystal spectrometer using ray tracing and experimental measurements. The OHREX spectrometer is a high-resolution x-ray spectrometer designed to measure spectral line shapes at the Orion laser facility. The spectrometer is fielded with up to two spherical crystals simultaneously covering two independent spectral ranges. Each crystal has a nominal radius of curvature of R = 67.2 cm and is fielded at a nominal Bragg angle of 51.3°. To cover different bands of interest, several different crystals are available, including Ge (111), KAP, and several cuts of quartz, whose resolving power λ/Δλ exceeds 10 000. The calibrated response of the available crystals has previously been reported from measurements at the EBIT-I electron beam ion trap at Lawrence Livermore National Laboratory. Here, we model the absolute throughput of each crystal using ray tracing and verify the results using experimental data for the quartz (101¯1) crystal.

12.
Rev Sci Instrum ; 92(3): 033519, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33819987

RESUMEN

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure iron opacities at varying densities and temperatures relevant to the solar interior and to verify recent experimental results obtained at the Sandia Z-machine, that diverge from theory. The first set of NIF experiments collected iron opacity data at ∼150 eV to 160 eV and an electron density of ∼7 × 1021 cm-3, with a goal to study temperatures up to ∼210 eV, with electron densities of up to ∼3 × 1022 cm-3. Among several techniques used to infer the temperature of the heated Fe sample, the absolutely calibrated DANTE-2 filtered diode array routinely provides measurements of the hohlraum conditions near the sample. However, the DANTE-2 temperatures are consistently low compared to pre-shot LASNEX simulations for a range of laser drive energies. We have re-evaluated the estimated uncertainty in the reported DANTE-2 temperatures and also the error generated by varying channel participation in the data analysis. An uncertainty of ±5% or better can be achieved with appropriate spectral coverage, channel participation, and metrology of the viewing slot.

13.
J Exp Med ; 184(3): 1127-36, 1996 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9064329

RESUMEN

Mice with a genetically engineered deficiency for either IL-4 or IFN-gamma R1 (single mutants), and IL-4/IFN-gamma R1 (double mutants) on the Balb/c and 129Sv background were used to study the course of infection with Leishmania major. In contrast to genetically resistant 129Sv wildtype mice, IL-4/IFN-gamma R1 double mutant mice developed fetal disease with parasite dissemination to visceral organs similar to mice lacking IFN-gamma R1 only. Balb/c mice, which are exquisitely susceptible to L. major, were rendered resistant to infection by disruption of the IL-4 gene. As compared to homozygous IL-4+/- mice, heterozygous IL-4+/- mice, heterozygous IL-4+/- animals consistently developed smaller lesions with less ulceration and necrosis, indicating the likelihood of gene-dosage effects. This implicates that the magnitude of the IL-4 response determines the severity of disease. CD4+ T cells of IL-4-deficient mice showed impaired Th2 cell development, as assessed by quantitative RT-PCR of characteristic cytokines. Development of resistance is not explained by default Th1 development, because this was observed only at very late stages of infection. Moreover, the induction of inflammatory cytokines (e.g., IL-1 alpha, IL-1 beta, TNF-alpha, IL-12) together with iNOS in the lesion and draining lymph nodes was not altered in the absence of IL-4.


Asunto(s)
Interleucina-4/deficiencia , Leishmania major , Leishmaniasis Cutánea/inmunología , Ratones Endogámicos BALB C/inmunología , Animales , Inmunidad Innata , Interferón gamma/fisiología , Leishmaniasis Cutánea/genética , Ratones , Ratones Endogámicos BALB C/genética , Óxido Nítrico Sintasa/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Rev Sci Instrum ; 91(8): 083507, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32872957

RESUMEN

Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these under-determined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in the literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms nor do they require a priori spectral knowledge. While the original intent of such measurements was to diagnose the temporal evolution of spectral power from quasi-blackbody radiation sources-where the exact details of spectral content were not thought to be crucial-we demonstrate that this new technique can greatly enhance the utility of the diagnostic by providing more physical spectra and improved robustness to hardware configuration for even strongly non-Planckian distributions.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(6 Pt 2): 066406, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18643382

RESUMEN

Measurements of the L -shell emission of highly charged gold ions were made under controlled laboratory conditions using the SuperEBIT electron beam ion trap, allowing detailed spectral observations of lines from Fe-like Au53+ through Ne-like Au69+ . Using atomic data from the Flexible Atomic Code, we have identified strong 3d_{52}-->2p_{32} emission features that can be used to diagnose the charge state distribution in high energy density plasmas, such as those found in the laser entrance hole of hot hohlraum radiation sources. We provide collisional-radiative calculations of the average ion charge Z as a function of temperature and density, which can be used to relate charge state distributions inferred from 3d_{52}-->2p_{32} emission features to plasma conditions, and investigate the effects of plasma density on calculated L -shell Au emission spectra.

16.
Rev Sci Instrum ; 89(10): 10F106, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399788

RESUMEN

K-shell x-ray spectra of Li- to H-like ions have long been used to determine plasma conditions. The ratio of integrated line intensities is used to determine the temperature. At the density of non-local thermal dynamic equilibrium (NLTE) plasmas (n e ≈ 1021 cm-3), the K-shell spectrum is not very sensitive to density. We propose using the L-shell emission of open L-shell ions (C- to Li-like) as an alternative to determine both temperature and density of NLTE plasmas. First, the L-shell models of a mid-Z material need to be verified against the temperatures obtained using a K-shell spectrum of a low-Z material. A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of NLTE plasmas of mid-Z materials. Studies have been done using a 250 µm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 µm diameter, 13 µm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the emitting volume vs time was measured with x-ray imaging (face-on and side-on) to determine the density. The temperature was measured from the Ti K-shell spectra. The use of this platform for the verification of atomic L-shell models is discussed.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056402, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18233771

RESUMEN

We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10(17), 10(18), and 10(19) Wcm2, using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kalpha generation, collisional coupling, and plasma expansion.

18.
Rev Sci Instrum ; 87(11): 11E330, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910695

RESUMEN

The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 2): 036408, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16241580

RESUMEN

The compact multipulse terawatt (COMET) laser facility at LLNL was used to irradiate Al-coated 2-50 microm Ti foils with approximately 10(19) W cm(-2) , 500 fs, 3-6 J laser pulses. Laser-plasma interactions on the front side of the target generate hot electrons with sufficient energy to excite inner-shell electrons in Ti, creating Kalpha emission which has been measured using a focusing spectrometer with spatial resolution aimed at the back surface of the targets. The spatial extent of the emission varies with target thickness. The high spectral resolution (lambda/Deltalambda approximately equal to 3800) is sufficient to measure broadening of the Kalpha emission feature due to the emergence of blueshifted satellites from ionized Ti in a heated region of the target. A self-consistent-field model is used to spectroscopically diagnose thermal electron temperatures up to 40 eV in the strongly coupled Ti plasmas.

20.
Rev Sci Instrum ; 86(10): 103511, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26520959

RESUMEN

Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA