Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 294(8): 2913-2923, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30567734

RESUMEN

Phosphorylation of cardiac sarcomeric proteins plays a major role in the regulation of the physiological performance of the heart. Phosphorylation of thin filament proteins, such as troponin I and T, dramatically affects calcium sensitivity of the myofiber and systolic and diastolic functions. Phosphorylation of the regulatory protein tropomyosin (Tpm) results in altered biochemical properties of contraction; however, little is known about the physiological effect of Tpm phosphorylation on cardiac function. To address the in vivo significance of Tpm phosphorylation, here we generated transgenic mouse lines having a phosphomimetic substitution in the phosphorylation site of α-Tpm (S283D). High expression of Tpm S283D variant in one transgenic mouse line resulted in an increased heart:body weight ratio, coupled with a severe dilated cardiomyopathic phenotype resulting in death within 1 month of birth. Moderate Tpm S283D mice expression in other lines caused mild myocyte hypertrophy and fibrosis, did not affect lifespan, and was coupled with decreased expression of extracellular signal-regulated kinase 1/2 kinase signaling. Physiological analysis revealed that the transgenic mice exhibit impaired diastolic function, without changes in systolic performance. Surprisingly, we observed no alterations in calcium sensitivity of the myofibers, cooperativity, or calcium-ATPase activity in the myofibers. Our experiments also disclosed that casein kinase 2 plays an integral role in Tpm phosphorylation. In summary, increased expression of pseudo-phosphorylated Tpm impairs diastolic function in the intact heart, without altering calcium sensitivity or cooperativity of myofibers. Our findings provide the first extensive in vivo assessment of Tpm phosphorylation in the heart and its functional role in cardiac performance.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/patología , Tropomiosina/fisiología , Animales , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/metabolismo , Células Cultivadas , Ratones , Ratones Transgénicos , Mutación , Miofibrillas/metabolismo , Miofibrillas/patología , Fosforilación
2.
J Biol Chem ; 289(13): 8818-27, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24509847

RESUMEN

Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 µm) and long (2.3 µm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.


Asunto(s)
Proteínas Portadoras/química , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Fragmentos de Péptidos/metabolismo , Sarcómeros/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Cinética , Ratones , Proteolisis , Tropomiosina/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 309(10): H1720-30, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432840

RESUMEN

S-glutathionylation of cardiac myosin-binding protein C (cMyBP-C) induces Ca(2+) sensitization and a slowing of cross-bridge kinetics as a result of increased oxidative signaling. Although there is evidence for a role of oxidative stress in disorders associated with hypertrophic cardiomyopathy (HCM), this mechanism is not well understood. We investigated whether oxidative myofilament modifications may be in part responsible for diastolic dysfunction in HCM. We administered N-acetylcysteine (NAC) for 30 days to 1-mo-old wild-type mice and to transgenic mice expressing a mutant tropomyosin (Tm-E180G) and nontransgenic littermates. Tm-E180G hearts demonstrate a phenotype similar to human HCM. After NAC administration, the morphology and diastolic function of Tm-E180G mice was not significantly different from controls, indicating that NAC had reversed baseline diastolic dysfunction and hypertrophy in our model. NAC administration also increased sarco(endo)plasmic reticulum Ca(2+) ATPase protein expression, reduced extracellular signal-related kinase 1/2 phosphorylation, and normalized phosphorylation of phospholamban, as assessed by Western blot. Detergent-extracted fiber bundles from NAC-administered Tm-E180G mice showed nearly nontransgenic (NTG) myofilament Ca(2+) sensitivity. Additionally, we found that NAC increased tension cost and rate of cross-bridge reattachment. Tm-E180G myofilaments were found to have a significant increase in S-glutathionylation of cMyBP-C, which was returned to NTG levels upon NAC administration. Taken together, our results indicate that oxidative myofilament modifications are an important mediator in diastolic function, and by relieving this modification we were able to reverse established diastolic dysfunction and hypertrophy in HCM.


Asunto(s)
Acetilcisteína/farmacología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Diástole/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Miofibrillas/efectos de los fármacos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miofibrillas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tropomiosina/genética
4.
J Mol Cell Cardiol ; 77: 53-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25280781

RESUMEN

The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy.


Asunto(s)
Cardiomiopatía Hipertrófica/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Tropomiosina/genética , Animales , Cardiomiopatía Hipertrófica/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Inactivación de Genes , Frecuencia Cardíaca , Masculino , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Tropomiosina/metabolismo , Presión Ventricular
5.
J Biol Chem ; 288(40): 28925-35, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23960072

RESUMEN

Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/metabolismo , Tropomiosina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Cardiomiopatía Hipertrófica Familiar/diagnóstico por imagen , Cardiomiopatía Hipertrófica Familiar/patología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Immunoblotting , Ratones , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miofibrillas/metabolismo , Fosforilación , Ultrasonografía
6.
J Biol Chem ; 288(23): 16235-16246, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23609439

RESUMEN

α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca(2+) sensitivity and cardiomyocyte contractility without changes in intracellular Ca(2+) transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts.


Asunto(s)
Mutación Missense , Contracción Miocárdica , Miocardio/metabolismo , Volumen Sistólico , Tropomiosina/biosíntesis , Sustitución de Aminoácidos , Animales , Ratones , Ratones Transgénicos , Miocardio/patología , Resonancia Magnética Nuclear Biomolecular , Estabilidad Proteica , Ratas , Relación Estructura-Actividad , Tropomiosina/química , Tropomiosina/genética
7.
Basic Res Cardiol ; 109(6): 445, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25280528

RESUMEN

Although ceramide accumulation in the heart is considered a major factor in promoting apoptosis and cardiac disorders, including heart failure, lipotoxicity and ischemia-reperfusion injury, little is known about ceramide's role in mediating changes in contractility. In the present study, we measured the functional consequences of acute exposure of isolated field-stimulated adult rat cardiomyocytes to C6-ceramide. Exogenous ceramide treatment depressed the peak amplitude and the maximal velocity of shortening without altering intracellular calcium levels or kinetics. The inactive ceramide analog C6-dihydroceramide had no effect on myocyte shortening or [Ca(2+)]i transients. Experiments testing a potential role for C6-ceramide-mediated effects on activation of protein kinase C (PKC) demonstrated evidence for signaling through the calcium-independent isoform, PKCε. We employed 2-dimensional electrophoresis and anti-phospho-peptide antibodies to test whether treatment of the cardiomyocytes with C6-ceramide altered myocyte shortening via PKC-dependent phosphorylation of myofilament proteins. Compared to controls, myocytes treated with ceramide exhibited increased phosphorylation of myosin binding protein-C (cMyBP-C), specifically at Ser273 and Ser302, and troponin I (cTnI) at sites apart from Ser23/24, which could be attenuated with PKC inhibition. We conclude that the altered myofilament response to calcium resulting from multiple sites of PKC-dependent phosphorylation contributes to contractile dysfunction that is associated with cardiac diseases in which elevations in ceramides are present.


Asunto(s)
Ceramidas/fisiología , Miocitos Cardíacos/fisiología , Miofibrillas/metabolismo , Proteína Quinasa C/fisiología , Animales , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
8.
Physiol Genomics ; 45(17): 764-73, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23800848

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is a disease characterized by ventricular hypertrophy, fibrosis, and aberrant systolic and/or diastolic function. Our laboratories have previously developed two mouse models that affect cardiac performance. One mouse model encodes an FHC-associated mutation in α-tropomyosin: Glu → Gly at amino acid 180, designated as Tm180. These mice display a phenotype that is characteristic of FHC, including severe cardiac hypertrophy with fibrosis and impaired physiological performance. The other model was a gene knockout of phospholamban (PLN KO), a regulator of calcium uptake in the sarcoplasmic reticulum of cardiomyocytes; these hearts exhibit hypercontractility with no pathological abnormalities. Previous work in our laboratories shows that when mice were genetically crossed between the PLN KO and Tm180, the progeny (PLN KO/Tm180) display a rescued hypertrophic phenotype with improved morphology and cardiac function. To understand the changes in gene expression that occur in these models undergoing cardiac remodeling (Tm180, PLN KO, PLN KO/Tm180, and nontransgenic control mice), we conducted microarray analyses of left ventricular tissue at 4 and 12 mo of age. Expression profiling reveals that 1,187 genes changed expression in direct response to the three genetic models. With these 1,187 genes, 11 clusters emerged showing normalization of transcript expression in the PLN KO/Tm180 hearts. In addition, 62 transcripts are highly involved in suppression of the hypertrophic phenotype. Confirmation of the microarray analysis was conducted by quantitative RT-PCR. These results provide insight into genes that alter expression during cardiac remodeling and are active during modulation of the cardiomyopathic phenotype.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Expresión Génica , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Modelos Animales de Enfermedad , Ventrículos Cardíacos/fisiopatología , Ratones Noqueados , Ratones Transgénicos , Análisis por Micromatrices
9.
J Physiol ; 591(5): 1217-34, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23207592

RESUMEN

Abstract Cardiac troponin T (cTnT) has a highly acidic extended N-terminus, the physiological role of which remains poorly understood. To decipher the physiological role of this unique region, we deleted specific regions within the N-terminus of mouse cTnT (McTnT) to create McTnT1-44 and McTnT45-74 proteins. Contractile function and dynamic force-length measurements were made after reconstituting the McTnT deletion proteins into detergent-skinned cardiac papillary fibres harvested from non-transgenic mice that expressed α-tropomyosin (Tm). To further understand how the functional effects of the N-terminus of cTnT are modulated by Tm isoforms, McTnT deletion proteins were reconstituted into detergent-skinned cardiac papillary fibres harvested from transgenic mice that expressed both α- and ß-Tm. McTnT1-44, but not McTnT45-74, attenuated maximal activation of the thin filament. Myofilament Ca(2+) sensitivity, as measured by pCa50 (-log of [Ca(2+)]free required for half-maximal activation), decreased in McTnT1-44 (α-Tm) fibres. The desensitizing effect of McTnT1-44 on pCa50 was ablated in ß-Tm fibres. McTnT45-74 enhanced pCa50 in both α- and ß-Tm fibres, with ß-Tm having a bigger effect. The Hill coefficient of tension development was significantly attenuated by McTnT45-74, suggesting an effect on thin-filament cooperativity. The rate of cross-bridge (XB) detachment and the strained XB-mediated impact on other XBs were augmented by McTnT1-44 in ß-Tm fibres. The magnitude of the length-mediated recruitment of XBs was attenuated by McTnT1-44 in ß-Tm fibres. Our data demonstrate that the 1-44 region of McTnT is essential for maximal activation, whereas the cardiac-specific 45-74 region of McTnT is essential for augmenting cooperativity. Moreover, our data show that α- and ß-Tm isoforms have divergent effects on McTnT deletion mutant's ability to modulate cardiac thin-filament activation and Ca(2+) sensitivity. Our results not only provide the first explicit evidence for the existence of two distinct functional regions within the N-terminus of cTnT, but also offer mechanistic insights into the divergent physiological roles of these regions in mediating cardiac contractile activation.


Asunto(s)
Contracción Miocárdica , Músculos Papilares/metabolismo , Troponina T/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Electroforesis en Gel de Poliacrilamida , Cinética , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Mutación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Isoformas de Proteínas , Proteínas Recombinantes/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina T/química , Troponina T/genética
10.
J Biol Chem ; 287(53): 44478-89, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23148217

RESUMEN

Phosphorylation of tropomyosin (Tm) has been shown to vary in mouse models of cardiac hypertrophy. Little is known about the in vivo role of Tm phosphorylation. This study examines the consequences of Tm dephosphorylation in the murine heart. Transgenic (TG) mice were generated with cardiac specific expression of α-Tm with serine 283, the phosphorylation site of Tm, mutated to alanine. Echocardiographic analysis and cardiomyocyte cross-sectional area measurements show that α-Tm S283A TG mice exhibit a hypertrophic phenotype at basal levels. Interestingly, there are no alterations in cardiac function, myofilament calcium (Ca(2+)) sensitivity, cooperativity, or response to ß-adrenergic stimulus. Studies of Ca(2+) handling proteins show significant increases in sarcoplasmic reticulum ATPase (SERCA2a) protein expression and an increase in phospholamban phosphorylation at serine 16, similar to hearts under exercise training. Compared with controls, the decrease in phosphorylation of α-Tm results in greater functional defects in TG animals stressed by transaortic constriction to induce pressure overload-hypertrophy. This is the first study to investigate the in vivo role of Tm dephosphorylation under both normal and cardiac stress conditions, documenting a role for Tm dephosphorylation in the maintenance of a compensated or physiological phenotype. Collectively, these results suggest that modification of the Tm phosphorylation status in the heart, depending upon the cardiac state/condition, may modulate the development of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Tropomiosina/metabolismo , Animales , Calcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Femenino , Corazón/fisiopatología , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tropomiosina/genética
11.
J Muscle Res Cell Motil ; 34(3-4): 239-46, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23793376

RESUMEN

The focus of this review is on the very recent work we have conducted that addresses the molecular, morphological, and physiological significance of cardiac tropomyosin phosphorylation in the heart. We employ transgenic mice to address questions of how cardiomyocytes and the whole heart respond when the tropomyosin phosphorylation site (Ser283) is converted to a non-phosphorylatable amino acid (Ala). We address the phenotype of these mice during normal development and in response to acute cardiac stress (transaortic coarctation). In addition, we also examined how transgenic mice encoding the altered tropomyosin phosphorylation site (Ser283Ala) would respond to chronic cardiac stress through an encoded hypertrophic cardiomyopathy mutation (Glu180Gly). These studies are the first to address the in vivo significance of tropomyosin phosphorylation in the heart. In this review manuscript, we report the recent findings of these investigations.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Miocardio/metabolismo , Tropomiosina/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , Fosforilación
12.
J Mol Cell Cardiol ; 50(3): 442-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21047515

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is a leading cause of sudden cardiac death among young athletes but the functional effects of the myofilament mutations during FHC-associated ischemia and acidosis, due in part to increased extravascular compressive forces and microvascular dysfunction, are not well characterized. We tested the hypothesis that the FHC-linked tropomyosin (Tm) mutation Tm-E180G alters the contractile response to acidosis via increased myofilament Ca(2+) sensitivity. Intact papillary muscles from transgenic (TG) mice expressing Tm-E180G and exposed to acidic conditions (pH 6.9) exhibited a significantly smaller decrease in normalized isometric tension compared to non-transgenic (NTG) preparations. Times to peak tension and to 90% of twitch force relaxation in TG papillary muscles were significantly prolonged. Intact single ventricular TG myocytes demonstrated significantly less inhibition of unloaded shortening during moderate acidosis (pH 7.1) than NTG myocytes. The peak Ca(2+) transients were not different for TG or NTG at any pH tested. The time constant of re-lengthening was slower in TG myocytes, but not the rate of Ca(2+) decline. TG detergent-extracted fibers demonstrated increased Ca(2+) sensitivity of force and maximal tension compared to NTG at both normal and acidic pH (pH 6.5). Tm phosphorylation was not different between TG and NTG muscles at either pH. Our data indicate that acidic pH diminished developed force in hearts of TG mice less than in NTG due to their inherently increased myofilament Ca(2+) sensitivity, thus potentially contributing to altered energy demands and increased propensity for contractile dysfunction.


Asunto(s)
Acidosis/genética , Acidosis/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación , Tropomiosina/genética , Acidosis/fisiopatología , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Células Cultivadas , Muerte Súbita Cardíaca , Contracción Isométrica/fisiología , Ratones , Ratones Transgénicos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatología , Fosforilación , Tropomiosina/metabolismo
13.
J Mol Cell Cardiol ; 51(5): 812-20, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21840315

RESUMEN

We have recently shown that a temporary increase in sarcoplasmic reticulum (SR) cycling via adenovirus-mediated overexpression of sarcoplasmic reticulum ATPase (SERCA2) transiently improves relaxation and delays hypertrophic remodeling in a familial hypertrophic cardiomyopathy (FHC) caused by a mutation in the thin filament protein, tropomyosin (i.e., α-TmE180G or Tm180). In this study, we sought to permanently alter calcium fluxes via phospholamban (PLN) gene deletion in Tm180 mice in order to sustain long-term improvements in cardiac function and adverse cardiac remodeling/hypertrophy. While similar work has been done in FHCs resulting from mutations in thick myofilament proteins, no one has studied these effects in an FHC resulting from a thin filament protein mutation. Tm180 transgenic (TG) mice were crossbred with PLN knockout (KO) mice and four groups were studied in parallel: 1) non-TG (NTG), 2) Tm180, 3) PLNKO/NTG and 4) PLNKO/Tm180. Tm180 mice exhibit increased heart weight/body weight and hypertrophic gene markers compared to NTG mice, but levels in PLNKO/Tm180 mice were similar to NTG. Tm180 mice also displayed altered function as assessed via in situ pressure-volume analysis and echocardiography at 3-6 months and one year; however, altered function in Tm180 mice was rescued back to NTG levels in PLNKO/Tm180 mice. Collagen deposition, as assessed by Picrosirius Red staining, was increased in Tm180 mice but was similar in NTG and in PLNKO/Tm180 mice. Extracellular signal-regulated kinase (ERK1/2) phosphorylation increased in Tm180 mice while levels in PLNKO/Tm180 mice were similar to NTGs. The present study shows that by modulating SR calcium cycling, we were able to rescue many of the deleterious aspects of FHC caused by a mutation in the thin filament protein, Tm.


Asunto(s)
Biomarcadores/metabolismo , Proteínas de Unión al Calcio/deficiencia , Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Tropomiosina/genética , Animales , Peso Corporal , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/uso terapéutico , Cardiomiopatía Hipertrófica Familiar/diagnóstico por imagen , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Cardiomiopatía Hipertrófica Familiar/terapia , Modelos Animales de Enfermedad , Ecocardiografía , Quinasas MAP Reguladas por Señal Extracelular/genética , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mutación , Contracción Miocárdica/genética , Miocardio/citología , Miocardio/metabolismo , Tamaño de los Órganos , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Tropomiosina/metabolismo
14.
J Mol Cell Cardiol ; 50(1): 137-46, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21056571

RESUMEN

The AE3 Cl(-)/HCO(3)(-) exchanger is abundantly expressed in the sarcolemma of cardiomyocytes, where it mediates Cl(-)-uptake and HCO(3)(-)-extrusion. Inhibition of AE3-mediated Cl(-)/HCO(3)(-) exchange has been suggested to protect against cardiac hypertrophy; however, other studies indicate that AE3 might be necessary for optimal cardiac function. To test these hypotheses we crossed AE3-null mice, which appear phenotypically normal, with a hypertrophic cardiomyopathy mouse model carrying a Glu180Gly mutation in α-tropomyosin (TM180). Loss of AE3 had no effect on hypertrophy; however, survival of TM180/AE3 double mutants was sharply reduced compared with TM180 single mutants. Analysis of cardiac performance revealed impaired cardiac function in TM180 and TM180/AE3 mutants. TM180/AE3 double mutants were more severely affected and exhibited little response to ß-adrenergic stimulation, a likely consequence of their more rapid progression to heart failure. Increased expression of calmodulin-dependent kinase II and protein phosphatase 1 and differences in methylation and localization of protein phosphatase 2A were observed, but were similar in single and double mutants. Phosphorylation of phospholamban on Ser16 was sharply increased in both single and double mutants relative to wild-type hearts under basal conditions, leading to reduced reserve capacity for ß-adrenergic stimulation of phospholamban phosphorylation. Imaging analysis of isolated myocytes revealed reductions in amplitude and decay of Ca(2+) transients in both mutants, with greater reductions in TM180/AE3 mutants, consistent with the greater severity of their heart failure phenotype. Thus, in the TM180 cardiomyopathy model, loss of AE3 had no apparent anti-hypertrophic effect and led to more rapid decompensation and heart failure.


Asunto(s)
Antiportadores/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatía Hipertrófica/genética , Proteínas de Transporte de Catión , Femenino , Insuficiencia Cardíaca/genética , Immunoblotting , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Miocitos Cardíacos/patología , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno
15.
Circulation ; 121(3): 410-8, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20065163

RESUMEN

BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Tropomiosina/química , Tropomiosina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adulto , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Dimerización , Femenino , Expresión Génica/fisiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Homeostasis/fisiología , Humanos , Isomerismo , Masculino , Ratones , Ratones Transgénicos , Miofibrillas/metabolismo , Isoformas de Proteínas , Temperatura , Tropomiosina/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 301(4): H1646-55, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21743000

RESUMEN

The effects of nicotine (NIC) on normal hearts are fairly well established, yet its effects on hearts displaying familial hypertrophic cardiomyopathy have not been tested. We studied both the acute and chronic effects of NIC on a transgenic (TG) mouse model of FHC caused by a mutation in α-tropomyosin (Tm; i.e., α-Tm D175N TG, or Tm175). For acute effects, intravenously injected NIC increased heart rate, left ventricular (LV) pressure, and the maximal rate of LV pressure increase (+dP/dt) in non-TG (NTG) and Tm175 mice; however, Tm175 showed a significantly smaller increase in the maximal rate of LV pressure decrease (-dP/dt) compared with NTGs. Western blots revealed phosphorylation of phospholamban Ser16 and Thr17 residue increased in NTG mice following NIC injection but not in Tm175 mice. In contrast, phosphorylation of troponin I at serine residues 23 and 24 increased equally in both NTG and Tm175. Thus the attenuated increase in relaxation in Tm175 mice following acute NIC appears to result primarily from attenuated phospholamban phosphorylation. Chronic NIC administration (equivalent to smoking 2 packs of cigarettes/day for 4 mo) also increased +dP/dt in NTG and Tm175 mice compared with chronic saline. However, chronic NIC had little effect on heart rate, LV pressure, -dP/dt, LV wall and chamber dimensions, or collagen content for either group of mice.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/tratamiento farmacológico , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Tropomiosina/genética , Animales , Presión Sanguínea/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Separación Celular , Colágeno/metabolismo , Ecocardiografía , Femenino , Colorantes Fluorescentes , Fura-2 , Frecuencia Cardíaca/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Masculino , Ratones , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Función Ventricular Izquierda/fisiología , Remodelación Ventricular/efectos de los fármacos
17.
J Muscle Res Cell Motil ; 31(5-6): 315-22, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21221740

RESUMEN

Tropomyosin-kappa (TPM1-κ) is a newly discovered tropomyosin (TM) isoform that is exclusively expressed in the human heart and generated by an alternative splicing of the α-TM gene. We reported that TPM1-κ expression was increased in the hearts of patients with chronic dilated cardiomyopathy (DCM). To increase our understanding of the significance of this shift in isoform population, we generated transgenic (TG) mice expressing TPM1-κ in the cardiac compartment where TPM1-κ replaces 90% of the native TM. We previously showed that there was a significant inhibition of the ability of strongly bound cross-bridges to induce activation of TG myofilaments (Rajan et al., Circulation 121:410-418, 2010). Here, we compared the force-Ca(2+) relations in detergent extracted (skinned) fiber bundles isolated from non-transgenic (NTG) and TG-TPM1-κ hearts at two sarcomere lengths (SLs). Our data demonstrated a significant decrease in the Ca(2+) sensitivity of the myofilaments from TG-TPM1-κ hearts with no change in the maximum developed tension, length-dependent activation, and the ratio of ATPase rate to tension. There was also no difference in the affinity and cooperativity of Ca(2+)-binding to troponin in thin filaments reconstituted with either TPM1-κ or α-TM. We also compared protein phosphorylation in NTG and TG-TPM1-κ myofilaments. There was a decrease in the total phosphorylation of TPM1-κ compared to α-TM, but no significant change in other major sarcomeric proteins. Our results identify a novel mode of myofilament desensitization to Ca(2+) associated with a DCM linked switch in TM isoform population.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Contracción Miocárdica , Tropomiosina/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Ratones , Ratones Transgénicos , Fosforilación , Tropomiosina/genética
18.
J Mol Cell Cardiol ; 48(5): 893-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19835881

RESUMEN

Tropomyosin plays a key role in controlling calcium regulated sarcomeric contraction through its interactions with actin and the troponin complex. The focus of this review is on striated muscle tropomyosin isoforms and the in vivo approach we have taken to define the functional differences among these isoforms in regulating cardiac physiology. In addition, we address specific regions within tropomyosin that differ among the isoforms to impart differences in the physiological performance of muscle and the sarcomere itself. There is a high degree of amino acid identity among the three striated muscle alpha-, beta-, and gamma-tropomyosin isoforms; this identity ranges from 86% to 91%. We employ transgenic mouse model systems that express the different tropomyosin isoforms or chimeric tropomyosin molecules specifically in the myocardium. Results show that the three isoforms differentially regulate the rates of cardiac contraction and relaxation, along with conferring differences in myofilament calcium sensitivity and sarcomere tension development. We also found the putative troponin T binding regions of tropomyosin (amino acids 175-190 and 258-284) appear to a play significant role in imparting these physiological differences that are observed during cardiac and sarcomeric contraction/relaxation. In addition, we have successfully used chimeric tropomyosin molecules to rescue cardiomyopathic diseased mice by normalizing sarcomeric performance. These studies illustrate not only the importance of tropomyosin structure and function for understanding muscle physiology, but also demonstrate how this information can potentially be used for gene therapy.


Asunto(s)
Tropomiosina/fisiología , Animales , Calcio/metabolismo , Ratones , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Sarcómeros/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
19.
J Mol Cell Cardiol ; 49(6): 993-1002, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20854827

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant genetic disorder linked to numerous mutations in the sarcomeric proteins. The clinical presentation of FHC is highly variable, but it is a major cause of sudden cardiac death in young adults with no specific treatments. We tested the hypothesis that early intervention in Ca(2+) regulation may prevent pathological hypertrophy and improve cardiac function in a FHC displaying increased myofilament sensitivity to Ca(2+) and diastolic dysfunction. A transgenic (TG) mouse model of FHC with a mutation in tropomyosin at position 180 was employed. Adenoviral-Serca2a (Ad.Ser) was injected into the left ventricle of 1-day-old non-transgenic (NTG) and TG mice. Ad.LacZ was injected as a control. Serca2a protein expression was significantly increased in NTG and TG hearts injected with Ad.Ser for up to 6 weeks. Compared to TG-Ad.LacZ hearts, the TG-Ad.Ser hearts showed improved whole heart morphology. Moreover, there was a significant decline in ANF and ß-MHC expression. Developed force in isolated papillary muscle from 2- to 3-week-old TG-Ad.Ser hearts was higher and the response to isoproterenol (ISO) improved compared to TG-Ad.LacZ muscles. In situ hemodynamic measurements showed that by 3 months the TG-Ad.Ser hearts also had a significantly improved response to ISO compared to TG-Ad.LacZ hearts. The present study strongly suggests that Serca2a expression should be considered as a potential target for gene therapy in FHC. Moreover, our data imply that development of FHC can be successfully delayed if therapies are started shortly after birth.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/fisiopatología , Cardiomiopatía Hipertrófica Familiar/terapia , Técnicas de Transferencia de Gen , Terapia Genética , Pruebas de Función Cardíaca , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/uso terapéutico , Remodelación Ventricular/fisiología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Adenoviridae/genética , Animales , Animales Recién Nacidos , Factor Natriurético Atrial/metabolismo , Proteínas de Unión al Calcio/metabolismo , Hemodinámica/efectos de los fármacos , Humanos , Inyecciones , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Contracción Miocárdica/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Remodelación Ventricular/efectos de los fármacos
20.
J Cell Biochem ; 110(4): 875-81, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20564186

RESUMEN

TPM1kappa is an alternatively spliced isoform of the TPM1 gene whose specific role in cardiac development and disease is yet to be elucidated. Although mRNA studies have shown TPM1kappa expression in axolotl heart and skeletal muscle, it has not been quantified. Also the presence of TPM1kappa protein in axolotl heart and skeletal muscle has not been demonstrated. In this study, we quantified TPM1kappa mRNA expression in axolotl heart and skeletal muscle. Using a newly developed TPM1kappa specific antibody, we demonstrated the expression and incorporation of TPM1kappa protein in myofibrils of axolotl heart and skeletal muscle. The results support the potential role of TPM1kappa in myofibrillogenesis and sarcomeric function.


Asunto(s)
Músculo Esquelético/metabolismo , Miocardio/metabolismo , Isoformas de Proteínas/genética , Tropomiosina/genética , Empalme Alternativo , Ambystoma mexicanum , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Adhesión en Parafina , Isoformas de Proteínas/química , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tropomiosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA