Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 37(22): 4651-3, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23164868

RESUMEN

Deep-UV lithography using high-efficiency phase mask has been developed to print 100 nm period grating on sol-gel based thin layer. High efficiency phase mask has been designed to produce a high-contrast interferogram (periodic fringes) under water immersion conditions for 244 nm laser. The demonstration has been applied to a new developed immersion-compatible sol-gel layer. A sol-gel photoresist prepared from zirconium alkoxides caped with methacrylic acids was developed to achieve 50 nm resolution in a single step exposure. The nanostructures can be thermally annealed into ZrO(2). Such route considerably simplifies the process for elaborating nanopatterned surfaces of transition metal oxides, and opens new routes for integrating materials of interest for applications in the field of photocatalysis, photovoltaic, optics, photonics or microelectronics.


Asunto(s)
1-Propanol/química , Nanotecnología/métodos , Óxidos/química , Impresión/métodos , Rayos Ultravioleta , Circonio/química , Interferometría
2.
Nanotechnology ; 21(6): 065303, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20057037

RESUMEN

We developed specific negative tone resists suitable for preparing periodic inorganic nanostructures by ArF photolithography. This approach is based on the sol-gel chemistry of modified metal alkoxides followed by DUV laser irradiation. Patterning at the nanoscale was demonstrated by using an achromatic interferometer operating at 193 nm. In a second step, thermal treatment could be used to obtain metal oxide nanostructures (ZrO(2), TiO(2)). Such thermal treatment did not affect the integrity of the nanostructures. The DUV-induced modifications of the physico-chemical properties of the sol-gel thin film were followed by ellipsometry, XPS and AFM. The crystalline structure of the material after thermal treatment was proved by DRX analysis. Examples of periodic nanostructures are given in order to illustrate the possibilities opened by this new route that provides a convenient method to create transparent, robust, high refractive index nanostructures compatible with a wide variety of substrates.

3.
Sci Rep ; 5: 10490, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26014902

RESUMEN

Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the requirements for direct photopatterning and for achieving semi-conducting properties with thermal annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV irradiation step results in photolysis and a partial condensation of the inorganic network that freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in solar cell, display, flexible electronics, and biomedical sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA