Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Res ; 32(1): 135-149, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963661

RESUMEN

Rapid accumulation of cancer genomic data has led to the identification of an increasing number of mutational hotspots with uncharacterized significance. Here we present a biologically informed computational framework that characterizes the functional relevance of all 1107 published mutational hotspots identified in approximately 25,000 tumor samples across 41 cancer types in the context of a human 3D interactome network, in which the interface of each interaction is mapped at residue resolution. Hotspots reside in network hub proteins and are enriched on protein interaction interfaces, suggesting that alteration of specific protein-protein interactions is critical for the oncogenicity of many hotspot mutations. Our framework enables, for the first time, systematic identification of specific protein interactions affected by hotspot mutations at the full proteome scale. Furthermore, by constructing a hotspot-affected network that connects all hotspot-affected interactions throughout the whole-human interactome, we uncover genome-wide relationships among hotspots and implicate novel cancer proteins that do not harbor hotspot mutations themselves. Moreover, applying our network-based framework to specific cancer types identifies clinically significant hotspots that can be used for prognosis and therapy targets. Overall, we show that our framework bridges the gap between the statistical significance of mutational hotspots and their biological and clinical significance in human cancers.


Asunto(s)
Neoplasias , Proteoma , Genómica , Humanos , Mutación , Neoplasias/genética , Proteoma/química , Proteoma/genética
2.
Nat Methods ; 18(12): 1477-1488, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34845387

RESUMEN

Emergence of new viral agents is driven by evolution of interactions between viral proteins and host targets. For instance, increased infectivity of SARS-CoV-2 compared to SARS-CoV-1 arose in part through rapid evolution along the interface between the spike protein and its human receptor ACE2, leading to increased binding affinity. To facilitate broader exploration of how pathogen-host interactions might impact transmission and virulence in the ongoing COVID-19 pandemic, we performed state-of-the-art interface prediction followed by molecular docking to construct a three-dimensional structural interactome between SARS-CoV-2 and human. We additionally carried out downstream meta-analyses to investigate enrichment of sequence divergence between SARS-CoV-1 and SARS-CoV-2 or human population variants along viral-human protein-interaction interfaces, predict changes in binding affinity by these mutations/variants and further prioritize drug repurposing candidates predicted to competitively bind human targets. We believe this resource ( http://3D-SARS2.yulab.org ) will aid in development and testing of informed hypotheses for SARS-CoV-2 etiology and treatments.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Acoplamiento Viral , Evolución Biológica , COVID-19/inmunología , Variación Genética , Humanos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/fisiología
3.
Nat Methods ; 17(10): 985-988, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32994567

RESUMEN

Thorough quality assessment of novel interactions identified by proteome-wide cross-linking mass spectrometry (XL-MS) studies is critical. Almost all current XL-MS studies have validated cross-links against known three-dimensional structures of representative protein complexes. Here, we provide theoretical and experimental evidence demonstrating that this approach can drastically underestimate error rates for proteome-wide XL-MS datasets, and propose a comprehensive set of four data-quality metrics to address this issue.


Asunto(s)
Espectrometría de Masas/métodos , Proteoma , Proteómica/métodos , Reactivos de Enlaces Cruzados/química , Bases de Datos de Proteínas , Humanos , Conformación Proteica , Reproducibilidad de los Resultados
4.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398372

RESUMEN

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Asunto(s)
Sistemas de Lectura Abierta/genética , Oryza/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional/métodos , ADN de Plantas/genética , Bases de Datos Genéticas , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Protein Sci ; 29(1): 298-305, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721338

RESUMEN

Significant efforts have been devoted in the last decade to improving molecular docking techniques to predict both accurate binding poses and ranking affinities. Some shortcomings in the field are the limited number of standard methods for measuring docking success and the availability of widely accepted standard data sets for use as benchmarks in comparing different docking algorithms throughout the field. In order to address these issues, we have created a Cross-Docking Benchmark server. The server is a versatile cross-docking data set containing 4,399 protein-ligand complexes across 95 protein targets intended to serve as benchmark set and gold standard for state-of-the-art pose and ranking prediction in easy, medium, hard, or very hard docking targets. The benchmark along with a customizable cross-docking data set generation tool is available at http://disco.csb.pitt.edu. We further demonstrate the potential uses of the server in questions outside of basic benchmarking such as the selection of the ideal docking reference structure.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Algoritmos , Benchmarking , Sitios de Unión , Diseño de Fármacos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Navegador Web
6.
Nat Genet ; 52(10): 1067-1075, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958950

RESUMEN

Distal enhancers play pivotal roles in development and disease yet remain one of the least understood regulatory elements. We used massively parallel reporter assays to perform functional comparisons of two leading enhancer models and find that gene-distal transcription start sites are robust predictors of active enhancers with higher resolution than histone modifications. We show that active enhancer units are precisely delineated by active transcription start sites, validate that these boundaries are sufficient for capturing enhancer function, and confirm that core promoter sequences are necessary for this activity. We assay adjacent enhancers and find that their joint activity is often driven by the stronger unit within the cluster. Finally, we validate these results through functional dissection of a distal enhancer cluster using CRISPR-Cas9 deletions. In summary, definition of high-resolution enhancer boundaries enables deconvolution of complex regulatory loci into modular units.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Código de Histonas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética , Iniciación de la Transcripción Genética
7.
Cell Syst ; 10(4): 333-350.e14, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32325033

RESUMEN

Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/metabolismo , Conectoma/métodos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/genética , Aprendizaje Automático , Mamíferos/fisiología , Espectrometría de Masas/métodos , Ratones , Mutación/genética
8.
Nat Commun ; 10(1): 4141, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515488

RESUMEN

Each human genome carries tens of thousands of coding variants. The extent to which this variation is functional and the mechanisms by which they exert their influence remains largely unexplored. To address this gap, we leverage the ExAC database of 60,706 human exomes to investigate experimentally the impact of 2009 missense single nucleotide variants (SNVs) across 2185 protein-protein interactions, generating interaction profiles for 4797 SNV-interaction pairs, of which 421 SNVs segregate at > 1% allele frequency in human populations. We find that interaction-disruptive SNVs are prevalent at both rare and common allele frequencies. Furthermore, these results suggest that 10.5% of missense variants carried per individual are disruptive, a higher proportion than previously reported; this indicates that each individual's genetic makeup may be significantly more complex than expected. Finally, we demonstrate that candidate disease-associated mutations can be identified through shared interaction perturbations between variants of interest and known disease mutations.


Asunto(s)
Frecuencia de los Genes/genética , Variación Genética , Genética de Población , Alelos , Animales , Secuencia de Bases , Enfermedad/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Células HEK293 , Humanos , Ratones , Mutación Missense/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Unión Proteica/genética
9.
Curr Opin Syst Biol ; 11: 107-116, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31086831

RESUMEN

Rapid advances in next-generation sequencing technology have resulted in an explosion of whole-exome/genome sequencing data, providing an unprecedented opportunity to identify disease- and trait-associated variants in humans on a large scale. To date, the long-standing paradigm has leveraged fitness-based approximations to translate this ever-expanding sequencing data into causal insights in disease. However, while this approach robustly identifies variants under evolutionary constraint, it fails to provide molecular insights. Moreover, complex disease phenomena often violate standard assumptions of a direct organismal phenotype to overall fitness effect relationship. Here we discuss the potential of a molecular phenotype-oriented paradigm to uniquely identify candidate disease-causing mutations from the human genetic background. By providing a direct connection between single nucleotide mutations and observable organismal and cellular phenotypes associated with disease, we suggest that molecular phenotypes can readily incorporate alongside established fitness-based methodologies to provide complementary insights to the functional impact of human mutations. Lastly, we discuss how integrated approaches between molecular phenotypes and fitness-based perspectives facilitate new insights into the molecular mechanisms underlying disease-associated mutations while also providing a platform for improved interpretation of epistasis in human disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA