Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Mater ; 23(3): 369-376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191630

RESUMEN

Disordered photonic structures are promising for the realization of physical unclonable functions-physical objects that can overcome the limitations of conventional digital security and can enable cryptographic protocols immune against attacks by future quantum computers. The physical configuration of traditional physical unclonable functions is either fixed or can only be permanently modified, allowing one token per device and limiting their practicality. Here we overcome this limitation by creating reconfigurable structures made by light-transformable polymers in which the physical structure of the unclonable function can be reconfigured reversibly. Our approach allows the simultaneous coexistence of multiple physical unclonable functions within one device. The physical transformation is done all-optically in a reversible and spatially controlled fashion, allowing the generation of more complex keys. At the same time, as a set of switchable individual physical unclonable functions, it enables the authentication of multiple clients and allows for the practical implementations of quantum secure authentication and nonlinear generators of cryptographic keys.

2.
Small ; : e2306802, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063817

RESUMEN

Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.

3.
Macromol Rapid Commun ; 44(9): e2200958, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36912742

RESUMEN

Phase behavior modulation of liquid crystalline molecules can be addressed by structural modification at molecular level. Starting from a rigid rod-like core reduction of the symmetry or increase of the steric hindrance by different substituents generally reduces the clearing temperature. Similar approaches can be explored to modulate the properties of liquid crystalline networks (LCNs)-shape-changing materials employed as actuators in many fields. Depending on the application, the polymer properties have to be adjusted in terms of force developed under stimuli, kinetics of actuation, elasticity, and resistance to specific loads. In this work, the crosslinker modification at molecular level is explored towards the optimization of LCN properties as light-responsive artificial muscles. The synthesis and characterization of photopolymerizable crosslinkers, bearing different lateral groups on the aromatic core is reported. Such molecules are able to strongly modulate the material mechanical properties, such as kinetics and maximum tension under light actuation, opening up to interesting materials for biomedical applications.


Asunto(s)
Cristales Líquidos , Polímeros , Estructura Molecular , Polímeros/química , Cristales Líquidos/química , Fenómenos Mecánicos , Elasticidad
4.
Circ Res ; 124(8): e44-e54, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30732554

RESUMEN

RATIONALE: Despite major advances in cardiovascular medicine, heart disease remains a leading cause of death worldwide. However, the field of tissue engineering has been growing exponentially in the last decade and restoring heart functionality is now an affordable target; yet, new materials are still needed for effectively provide rapid and long-lasting interventions. Liquid crystalline elastomers (LCEs) are biocompatible polymers able to reversibly change shape in response to a given stimulus and generate movement. Once stimulated, LCEs can produce tension or movement like a muscle. However, so far their application in biology was limited by slow response times and a modest possibility to modulate tension levels during activation. OBJECTIVE: To develop suitable LCE-based materials to assist cardiac contraction. METHODS AND RESULTS: Thanks to a quick, simple, and versatile synthetic approach, a palette of biocompatible acrylate-based light-responsive LCEs with different molecular composition was prepared and mechanically characterized. Out of this, the more compliant one was selected. This material was able to contract for some weeks when activated with very low light intensity within a physiological environment. Its contraction was modulated in terms of light intensity, stimulation frequency, and ton/toff ratio to fit different contraction amplitude/time courses, including those of the human heart. Finally, LCE strips were mounted in parallel with cardiac trabeculae, and we demonstrated their ability to improve muscular systolic function, with no impact on diastolic properties. CONCLUSIONS: Our results indicated LCEs are promising in assisting cardiac mechanical function and developing a new generation of contraction assist devices.


Asunto(s)
Materiales Biocompatibles , Elastómeros , Corazón Auxiliar , Luz , Cristales Líquidos , Contracción Miocárdica , Ingeniería de Tejidos/métodos , Acrilatos , Órganos Bioartificiales , Materiales Biocompatibles/síntesis química , Fenómenos Biofísicos , Reactivos de Enlaces Cruzados/química , Elastómeros/síntesis química , Transferencia de Energía , Cristales Líquidos/química , Sistemas Microelectromecánicos/métodos , Movimientos de los Órganos , Factores de Tiempo , Andamios del Tejido/química
5.
Faraday Discuss ; 223(0): 216-232, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32716468

RESUMEN

Light responsive shape-changing polymers are able to mimic the function of biological muscles accomplishing mechanical work in response to selected stimuli. A variety of manufacturing techniques and chemical processes can be employed to shape these materials to different length scales, from centimeter fibers and films to 3D printed micrometric objects trying to replicate biological functions and operations. Controlled deformations shown to mimick basic animal operations such as walking, swimming or grabbing objects, while also controlling the refractive index and the geometry of devices, opens up the potential to implement tunable optical properties. Another possibility is that of combining artificial polymers with cells or biological tissue (such as intact cardiac trabeculae) with the aim to improve tissue formation in vitro or to support the mechanical function of damaged biological muscles. Such versatility is afforded by chemistry. New customized liquid crystalline monomers are presented here that modulate material properties for different applications. The role of synthetic material composition is highlighted as we demonstrate how using apparently similar molecular formulations, that liquid crystalline polymers can be adapted to different technological and medical challenges.


Asunto(s)
Órganos Artificiales , Músculos , Óptica y Fotónica , Robótica/instrumentación , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Polímeros/química , Impresión Tridimensional , Robótica/métodos
6.
Soft Matter ; 15(6): 1312-1318, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30512019

RESUMEN

Light represents a very versatile stimulus and its use to control the deformation in shape-changing polymers can take advantage of multiple parameters (such as wavelength, intensity and polarization) to be explored in order to obtain differentiated responses. Polymers with selected color responsiveness are commonly prepared by using different dyes, while a polarization-dependent control can be introduced exploiting trans-cis isomerization of azobenzenes. As shape-changing polymers driven by a photothermal effect are gaining more and more attention in many application fields, exploring polarization to modulate their response could enlarge the tuning parameter space and provide an insight into the material optical properties. In this work, we demonstrate the effect of light polarization on the deformation of liquid crystalline networks doped by a small amount of a push-pull azobenzene. We demonstrate how enhancing the dye alignment in the polymeric matrix leads to different deformations by orthogonal polarizations. These results demonstrate polarization as a convenient further degree of freedom besides wavelength and intensity of the light stimulus.

7.
Small ; 13(46)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29045016

RESUMEN

The communication reports the use of liquid crystalline networks (LCNs) for engineering tissue cultures with human cells. Their ability as cell scaffolds for different cell lines is demonstrated. Preliminary assessments of the material biocompatibility are performed on human dermal fibroblasts and murine muscle cells (C2C12), demonstrating that coatings or other treatments are not needed to use the acrylate-based materials as support. Moreover, it is found that adherent C2C12 cells undergo differentiation, forming multinucleated myotubes, which show the typical elongated shape, and contain bundles of stress fibers. Once biocompatibility is demonstrated, the same LCN films are used as a substrate for culturing human induced pluripotent stem cell-derived cardiomyocites (hiPSC-CMs) proving that LCNs are capable to develop adult-like dimensions and a more mature cell function in a short period of culture in respect to standard supports. The demonstrated biocompatibility together with the extraordinary features of LCNs opens to preparation of complex cell scaffolds, both patterned and stimulated, for dynamic cell culturing. The ability of these materials to improve cell maturation and differentiation will be developed toward engineered heart and skeletal muscular tissues exploring regenerative medicine toward bioartificial muscles for injured sites replacement.


Asunto(s)
Cristales Líquidos/química , Medicina Regenerativa , Cicatrización de Heridas , Animales , Adhesión Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Miocitos Cardíacos/citología
8.
Nat Mater ; 15(6): 647-53, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26878315

RESUMEN

Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.


Asunto(s)
Materiales Biomiméticos , Cilióforos , Robótica , Natación , Robótica/instrumentación , Robótica/métodos
9.
Nature ; 539(7629): 360-361, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828942

Asunto(s)
Rayos Láser , Física
10.
Nat Mater ; 13(7): 720-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24836733

RESUMEN

Disordered photonic materials can diffuse and localize light through random multiple scattering, offering opportunities to study mesoscopic phenomena, control light-matter interactions, and provide new strategies for photonic applications. Light transport in such media is governed by photonic modes characterized by resonances with finite spectral width and spatial extent. Considerable steps have been made recently towards control over the transport using wavefront shaping techniques. The selective engineering of individual modes, however, has been addressed only theoretically. Here, we experimentally demonstrate the possibility to engineer the confinement and the mutual interaction of modes in a two-dimensional disordered photonic structure. The strong light confinement is achieved at the fabrication stage by an optimization of the structure, and an accurate and local tuning of the mode resonance frequencies is achieved via post-fabrication processes. To show the versatility of our technique, we selectively control the detuning between overlapping localized modes and observe both frequency crossing and anti-crossing behaviours, thereby paving the way for the creation of open transmission channels in strongly scattering media.

11.
Opt Express ; 23(24): A1472-84, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698795

RESUMEN

We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optimal scattering strength, in-between the single-scattering and the diffusive (strong multiple-scattering) regimes. This study can guide experimentalists towards more efficient and potentially low-cost solutions in photovoltaic technologies.

13.
Phys Rev Lett ; 112(14): 143901, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24765963

RESUMEN

Structural correlations in disordered media are known to affect significantly the propagation of waves. In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.


Asunto(s)
Modelos Teóricos , Óptica y Fotónica/métodos , Anisotropía , Luz , Fotones , Dispersión de Radiación
14.
Nature ; 453(7194): 495-8, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18497819

RESUMEN

A random walk is a stochastic process in which particles or waves travel along random trajectories. The first application of a random walk was in the description of particle motion in a fluid (brownian motion); now it is a central concept in statistical physics, describing transport phenomena such as heat, sound and light diffusion. Lévy flights are a particular class of generalized random walk in which the step lengths during the walk are described by a 'heavy-tailed' probability distribution. They can describe all stochastic processes that are scale invariant. Lévy flights have accordingly turned out to be applicable to a diverse range of fields, describing animal foraging patterns, the distribution of human travel and even some aspects of earthquake behaviour. Transport based on Lévy flights has been extensively studied numerically, but experimental work has been limited and, to date, it has not seemed possible to observe and study Lévy transport in actual materials. For example, experimental work on heat, sound, and light diffusion is generally limited to normal, brownian, diffusion. Here we show that it is possible to engineer an optical material in which light waves perform a Lévy flight. The key parameters that determine the transport behaviour can be easily tuned, making this an ideal experimental system in which to study Lévy flights in a controlled way. The development of a material in which the diffusive transport of light is governed by Lévy statistics might even permit the development of new optical functionalities that go beyond normal light diffusion.

15.
ACS Appl Mater Interfaces ; 16(28): 37063-37072, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38972004

RESUMEN

The development of new anticounterfeiting solutions is a constant challenge and involves several research fields. Much interest is currently devoted to systems that are impossible to clone, based on the physical unclonable function (PUF) paradigm. In this work, a new strategy based on electrospinning and electrospraying of dye-doped polymeric materials is presented for the manufacturing of flexible free-standing films that embed simultaneously different PUF keys. The proposed films can be used to fabricate novel anticounterfeiting labels having three encryption levels: (i) a map of fluorescent polymer droplets, with random positions on a dense yarn of polymer nanofibers, (ii) a characteristic fluorescence spectrum for each label, and (iii) the unique speckle patterns that every label produces when illuminated with coherent laser light shaped in different wavefronts. The intrinsic uniqueness introduced by the manufacturing process encodes enough complexity into the optical anticounterfeiting tag to generate thousands of cryptographic keys. The simple and cheap fabrication process as well as multilevel authentication makes such colored polymeric unclonable tags a practical solution in the secure protection of goods in our daily life.

16.
Nat Mater ; 11(12): 1017-22, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042416

RESUMEN

Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists of the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a new approach for high-extraction-efficiency light-emitting diodes.

17.
Opt Express ; 21 Suppl 3: A460-8, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24104434

RESUMEN

The effect of periodic and disordered photonic structures on the absorption efficiency of amorphous and crystalline Silicon thin-film solar cells is investigated numerically. We show that disordered patterns possessing a short-range correlation in the position of the holes yield comparable, or even superior, absorption enhancements than periodic (photonic crystal) patterns. This work provides clear evidence that non-deterministic photonic structures represent a viable alternative strategy for photon management in thin-film solar cells, thereby opening the route towards more efficient and potentially cheaper photovoltaic technologies.

18.
Opt Express ; 21 Suppl 2: A268-75, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482289

RESUMEN

The surface of thin-film solar cells can be tailored with photonic nanostructures to allow light trapping in the absorbing medium. This in turn increases the optical thickness of the film and thus enhances their absorption. Such a coherent light trapping is generally accomplished with deterministic photonic architectures. Here, we experimentally explore the use of a different nanostructure, a disordered one, for this purpose. We show that the disorder-induced modes in the film allow improvements in the absorption over a broad range of frequencies and impinging angles.

19.
Bioengineering (Basel) ; 10(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37370607

RESUMEN

Downsizing surface-enhanced Raman spectroscopy (SERS) within microfluidic devices has opened interesting perspectives for the development of low-cost and portable (bio)sensors for the optical analysis of liquid samples. Despite the research efforts, SERS-fluidic devices still rely either on the use of expensive bulky set-ups or on polymeric devices giving spurious background signals fabricated via expensive manufacturing processes. Here, polymeric platforms integrating fluidics and optics were fabricated with versatile designs allowing easy coupling with fiber-based Raman systems. For the first time, anti-fouling photocurable perfluoropolyether (PFPE) was explored for high-throughput SERS-integrating chip fabrication via replica molding of negative stamps obtained through standard and advanced fabrication processes. The PFPE devices comprised networks of channels for fluid handling and for optical fiber housing with multiple orientations. Embedded microfeatures were used to control the relative positioning of the fibers, thus guaranteeing the highest signal delivering and collection. The feasibility of PFPE devices as fiber-based SERS fluidic platforms was demonstrated through the straightforward acquisition of Raman-SERS spectra of a mixture of gold nanoparticles as SERS substrates with rhodamine 6G (Rh6G) at decreasing concentrations. In the presence of high-performing gold nanostars, the Rh6G signal was detectable at dilutions down to the nanomolar level even without tight focusing and working at low laser power-a key aspect for analyte detection in real-world biomedical and environmental applications.

20.
Adv Mater ; 35(13): e2209152, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683324

RESUMEN

Tunable metal-insulator-metal (MIM) Fabry-Pérot (FP) cavities that can dynamically control light enable novel sensing, imaging and display applications. However, the realization of dynamic cavities incorporating stimuli-responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation. To overcome these challenges, a new tuning mechanism employing reversible mechanical adaptations of a polymer network is proposed, and dynamic tuning of optical resonances is demonstrated. Solid-state temperature-responsive optical coatings are developed by preparing a monodomain nematic liquid crystalline network (LCN) and are incorporated between metallic mirrors to form active optical microcavities. LCN microcavities offer large, reversible and highly linear spectral tuning of FP resonances reaching wavelength-shifts up to 40 nm via thermomechanical actuation while featuring outstanding repeatability and precision over more than 100 heating-cooling cycles. This degree of tunability allows for reversible switching between the reflective and the absorbing states of the device over the entire visible and near-infrared spectral regions, reaching large changes in reflectance with modulation efficiency ΔR = 79%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA