Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Exp Nephrol ; 28(6): 496-504, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402504

RESUMEN

A critical degree of podocyte depletion causes glomerulosclerosis, and persistent podocyte loss in glomerular diseases drives the progression to end-stage kidney disease. The extent of podocyte injury at a point in time can be histologically assessed by measuring podocyte number, size, and density ("Biopsy podometrics"). However, repeated invasive renal biopsies are associated with increased risk and cost. A noninvasive method for assessing podocyte injury and depletion is required. Albuminuria and proteinuria do not always correlate with disease activity. Podocytes are located on the urinary space side of the glomerular basement membrane, and as they undergo stress or detach, their products can be identified in urine. This raises the possibility that urinary podocyte products can serve as clinically useful markers for monitoring glomerular disease activity and progression ("Urinary podometrics"). We previously reported that urinary sediment podocyte mRNA reflects disease activity in both animal models and human glomerular diseases. This includes diabetes and hypertension which together account for 60% of new-onset dialysis induction patients. Improving approaches to preventing progression is an urgent priority for the renal community. Sufficient evidence now exists to indicate that monitoring urinary podocyte markers could serve as a useful adjunctive strategy for determining the level of current disease activity and response to therapy in progressive glomerular diseases.


Asunto(s)
Biomarcadores , Podocitos , Podocitos/patología , Humanos , Biomarcadores/orina , Animales , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/diagnóstico , Progresión de la Enfermedad , Proteinuria/orina , Proteinuria/etiología , Lesión Renal Aguda/orina , Lesión Renal Aguda/patología , Lesión Renal Aguda/terapia , Lesión Renal Aguda/etiología
2.
Am J Physiol Renal Physiol ; 323(4): F401-F410, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924446

RESUMEN

Research on kidney diseases is being transformed by the rapid expansion and innovations in omics technologies. The analysis, integration, and interpretation of big data, however, have been an impediment to the growing interest in applying these technologies to understand kidney function and failure. Targeting this urgent need, the University of Michigan O'Brien Kidney Translational Core Center (MKTC) and its Administrative Core established the Applied Systems Biology Core. The Core provides need-based support for the global kidney community centered on enabling incorporation of systems biology approaches by creating web-based, user-friendly analytic and visualization tools, like Nephroseq and Nephrocell, guiding with experimental design, and processing, analysis, and integration of large data sets. The enrichment core supports systems biology education and dissemination through workshops, seminars, and individualized training sessions. Meanwhile, the Pilot and Feasibility Program of the MKTC provides pilot funding to both early-career and established investigators new to the field, to integrate a systems biology approach into their research projects. The relevance and value of the portfolio of training and services offered by MKTC are reflected in the expanding community of young investigators, collaborators, and users accessing resources and engaging in systems biology-based kidney research, thereby motivating MKTC to persevere in its mission to serve the kidney research community by enabling access to state-of-the-art data sets, tools, technologies, expertise, and learning opportunities for transformative basic, translational, and clinical studies that will usher in solutions to improve the lives of people impacted by kidney disease.


Asunto(s)
Enfermedades Renales , Biología de Sistemas , Humanos , Riñón , Michigan , Investigación Biomédica Traslacional
3.
Kidney Int ; 101(4): 779-792, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34952098

RESUMEN

Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.


Asunto(s)
Enfermedades Renales , Trasplante de Riñón , Podocitos , Células Endoteliales , Femenino , Membrana Basal Glomerular/patología , Humanos , Hipertrofia , Integrina alfa3/metabolismo , Enfermedades Renales/patología , Trasplante de Riñón/efectos adversos , Masculino , Podocitos/patología
4.
Clin Transplant ; 35(11): e14457, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34387906

RESUMEN

Long-term kidney transplant (KT) survival has remained relatively stagnant. Protocol biopsy studies suggest that glomerulosclerosis is a significant contributor to long-term graft failure. We previously demonstrated that podocyte loss in the first year post-transplantation predicted long-term allograft survival. However, whether increased podocyte loss continues over the lifespan of a KT remains unclear. We performed a cross-sectional analysis of 1182 urine samples from 260 KT recipients up to 19-years after transplantation. Urine pellet (UP) mRNAs were assayed for podocyte (NPHS2/podocin and nephrin/NPHS1), distal tubule (aquaporin2), and profibrotic cytokine (TGFbeta1). Multivariable generalized estimating equations were used to obtain "population-averaged" effects for these markers over time post-KT. Consistent with early stresses both podocyte and tubular markers increased immediately post-KT. However, only podocyte markers continued to increase long-term. A role for hypertrophic stresses in driving podocyte loss over time is implied by their association with donor BMI, recipient BMI, and donor-recipient BMI mismatch at transplantation. Furthermore, UP podocin mRNA was associated with urine TGFbeta1, proteinuria, and reduced estimated glomerular filtration rate, thereby linking podocyte injury to allograft fibrosis and survival. In conclusion we observed that podocyte loss continues long-term post-KT suggesting an important role in driving late graft loss.


Asunto(s)
Podocitos , Aloinjertos , Estudios Transversales , Humanos , Longevidad , Proteinuria
5.
Am J Physiol Renal Physiol ; 318(5): F1177-F1187, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32223311

RESUMEN

Loss-of-function mutations in phospholipase C-ε1 (PLCE1) have been detected in patients with nephrotic syndrome, but other family members with the same mutation were asymptomatic, suggesting additional stressor are required to cause the full phenotype. Consistent with these observations, we determined that global Plce1-deficient mice have histologically normal glomeruli and no albuminuria at baseline. Angiotensin II (ANG II) is known to induce glomerular damage in genetically susceptible individuals. Therefore, we tested whether ANG II enhances glomerular damage in Plce1-deficient mice. ANG II increased blood pressure equally in Plce1-deficient and wild-type littermates. Additionally, it led to 20-fold increased albuminuria and significantly more sclerotic glomeruli in Plce1-deficient mice compared with wild-type littermates. Furthermore, Plce1-deficient mice demonstrated diffuse mesangial expansion, podocyte loss, and focal podocyte foot process effacement. To determine whether these effects are mediated by hypertension and hyperfiltration, rather than directly through ANG II, we raised blood pressure to a similar level using DOCA + salt + uninephrectomy and norepinephrine. This caused a fivefold increase in albuminuria in Plce1-deficient mice and a significant increase in the number of sclerotic glomeruli. Consistent with previous findings in mice, we detected strong PLCE1 transcript expression in podocytes using single cell sequencing of human kidney tissue. In hemagglutinin-tagged Plce1 transgenic mice, Plce1 was detected in podocytes and also in glomerular arterioles using immunohistochemistry. Our data demonstrate that Plce1 deficiency in mice predisposes to glomerular damage secondary to hypertensive insults.


Asunto(s)
Presión Sanguínea , Glomerulonefritis/enzimología , Hipertensión/enzimología , Glomérulos Renales/enzimología , Fosfoinositido Fosfolipasa C/deficiencia , Albuminuria/enzimología , Albuminuria/genética , Albuminuria/fisiopatología , Animales , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Femenino , Glomerulonefritis/genética , Glomerulonefritis/patología , Glomerulonefritis/fisiopatología , Hipertensión/genética , Hipertensión/fisiopatología , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nefrectomía , Fosfoinositido Fosfolipasa C/genética , Cloruro de Sodio Dietético
6.
Kidney Int ; 98(3): 699-707, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32739208

RESUMEN

Hypertension-associated progressive glomerulosclerosis is a significant driver of both de novo and all-cause chronic kidney disease leading to end-stage kidney failure. The progression of glomerular disease proceeds via continuing depletion of podocytes from the glomeruli into the ultrafiltrate. To non-invasively assess injury patterns associated with mean arterial pressure (MAP), we conducted an observational study of 87 healthy normotensive individuals who were cleared for living kidney donation. Urine pellet podocin and aquaporin2 mRNAs normalized to the urine creatinine concentration (UPod:Creat ratio and UAqp2:Creat ratio) were used as markers of podocyte detachment and tubular injury, respectively. The ratio of two podocyte mRNA markers, podocin to nephrin (UPod:Neph) as well as the ratio of podocin to the tubular marker aquaporin2 (UPod:Aqp2) estimated the relative rates of podocyte stress and glomerular vs. tubular injury. The MAP was positively correlated with the UPod:Neph and UPod:Aqp2, thereby confirming the relationship of MAP with podocyte stress and the preferential targeting of the glomerulus by higher MAP. In multivariable linear regression analysis, both UPod:Neph and UPod:Creat, but not UAqp2:Creat or proteinuria, were both significantly related to a range of normal MAP (70 to 110 mm Hg). Systolic, as opposed to diastolic or pulse pressure was associated with UPod:Creat. Thus, higher podocyte stress and detachment into the urine are associated with MAP even in a relatively "normal" range of MAP. Hence, urine pellet mRNA monitoring can potentially identify progression risk before the onset of overt hypertension, proteinuria or chronic kidney disease.


Asunto(s)
Podocitos , Acuaporina 2/genética , Presión Arterial , Humanos , Glomérulos Renales , Proteinuria
7.
Nephrol Dial Transplant ; 34(7): 1232-1239, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500951

RESUMEN

BACKGROUND: Kidney allograft half-life has not improved despite excellent short-term survival. Recent long-term surveillance biopsy studies identify accumulating glomerulosclerosis (GS) to be associated with late allograft loss. While podocyte depletion is well known to drive proteinuria and GS in animal models and human glomerular diseases, its role in renal allograft loss of function is generally not recognized. METHODS: To address these questions, we collected urine from 125 kidney allograft recipients in the first posttransplant year for urine pellet messenger RNA (mRNA) and protein analysis, with a median follow up of 4.5 years. RESULTS: Using multivariable linear models adjusted for proteinuria, transplant, recipient and donor factors, we observed that the average urine pellet podocin mRNA normalized to urine creatinine (UPodCR) in the first posttransplant year was significantly associated with an estimated glomerular filtration rate (eGFR) decline (P = 0.001). The relationship between UPodCR and eGFR decline persisted even among recipients who were nonproteinuric and who had no recurrent or de novo glomerular disease identified on 1-year protocol biopsy. Finally, we identified recipient, donor and recipient:donor body surface area mismatch ratio to be independently associated with UPodCR early after transplantation. A larger donor was protective, while a larger recipient and increased recipient:donor size mismatch ratio were associated with increased UPodCR. CONCLUSIONS: These findings support the concept that in kidney allografts, accelerated podocyte loss precedes proteinuria and is associated with inferior long-term allograft outcomes as measured by eGFR decline and may be initiated by recipient:donor size mismatch. Modulating factors driving early podocyte detachment after kidney transplantation may help improve long-term outcomes.


Asunto(s)
Tasa de Filtración Glomerular/fisiología , Rechazo de Injerto/patología , Trasplante de Riñón/efectos adversos , Podocitos/patología , Adolescente , Adulto , Anciano , Aloinjertos , Animales , Biopsia , Femenino , Estudios de Seguimiento , Rechazo de Injerto/fisiopatología , Supervivencia de Injerto , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
8.
J Am Soc Nephrol ; 28(8): 2420-2430, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28250053

RESUMEN

In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.


Asunto(s)
Microscopía Intravital , Riñón/citología , Riñón/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Riñón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL
9.
J Am Soc Nephrol ; 28(10): 2931-2945, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28720684

RESUMEN

Glomerular sclerotic lesions develop when the glomerular filtration surface area exceeds the availability of podocyte foot process coverage, but the mechanisms involved are incompletely characterized. We evaluated potential mechanisms using a transgenic (podocin promoter-AA-4E-BP1) rat in which podocyte capacity for hypertrophy in response to growth factor/nutrient signaling is impaired. FSGS lesions resembling human FSGS developed spontaneously by 7 months of age, and could be induced earlier by accelerating kidney hypertrophy by nephrectomy. Early segmental glomerular lesions occurred in the absence of a detectable reduction in average podocyte number per glomerulus and resulted from the loss of podocytes in individual glomerular capillary loops. Parietal epithelial cell division, accumulation on Bowman's capsule, and tuft invasion occurred at these sites. Three different interventions that prevented kidney growth and glomerular enlargement (calorie intake reduction, inhibition of mammalian target of rapamycin complex, and inhibition of angiotensin-converting enzyme) protected against FSGS lesion development, even when initiated late in the process. Ki67 nuclear staining and unbiased transcriptomic analysis identified increased glomerular (but not podocyte) cell cycling as necessary for FSGS lesion development. The rat FSGS-associated transcriptomic signature correlated with human glomerular transcriptomes associated with disease progression, compatible with similar processes occurring in man. We conclude that FSGS lesion development resulted from glomerular growth that exceeded the capacity of podocytes to adapt and adequately cover some parts of the filtration surface. Modest modulation of the growth side of this equation significantly ameliorated FSGS progression, suggesting that glomerular growth is an underappreciated therapeutic target for preservation of renal function.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/etiología , Glomérulos Renales/crecimiento & desarrollo , Adaptación Fisiológica , Animales , Peso Corporal , Ciclo Celular , Enalapril , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Glomérulos Renales/patología , Masculino , Tamaño de los Órganos , Podocitos/fisiología , Distribución Aleatoria , Ratas Endogámicas F344 , Estrés Fisiológico , Transcriptoma
10.
Kidney Int ; 92(6): 1515-1525, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28754557

RESUMEN

Podocyte depletion is a common mechanism driving progression in glomerular diseases. Alport Syndrome glomerulopathy, caused by defective α3α4α5 (IV) collagen heterotrimer production by podocytes, is associated with an increased rate of podocyte detachment detectable in urine and reduced glomerular podocyte number suggesting that defective podocyte adherence to the glomerular basement membrane might play a role in driving progression. Here a genetically phenotyped Alport Syndrome cohort of 95 individuals [urine study] and 41 archived biopsies [biopsy study] were used to test this hypothesis. Podocyte detachment rate (measured by podocin mRNA in urine pellets expressed either per creatinine or 24-hour excretion) was significantly increased 11-fold above control, and prior to a detectably increased proteinuria or microalbuminuria. In parallel, Alport Syndrome glomeruli lose an average 26 podocytes per year versus control glomeruli that lose 2.3 podocytes per year, an 11-fold difference corresponding to the increased urine podocyte detachment rate. Podocyte number per glomerulus in Alport Syndrome biopsies is projected to be normal at birth (558/glomerulus) but accelerated podocyte loss was projected to cause end-stage kidney disease by about 22 years. Biopsy data from two independent cohorts showed a similar estimated glomerular podocyte loss rate comparable to the measured 11-fold increase in podocyte detachment rate. Reduction in podocyte number and density in biopsies correlated with proteinuria, glomerulosclerosis, and reduced renal function. Thus, the podocyte detachment rate appears to be increased from birth in Alport Syndrome, drives the progression process, and could potentially help predict time to end-stage kidney disease and response to treatment.


Asunto(s)
Membrana Basal Glomerular/patología , Péptidos y Proteínas de Señalización Intracelular/orina , Fallo Renal Crónico/patología , Proteínas de la Membrana/orina , Nefritis Hereditaria/patología , Podocitos/patología , Adolescente , Factores de Edad , Biopsia , Recuento de Células , Niño , Preescolar , Estudios de Cohortes , Creatinina/orina , Progresión de la Enfermedad , Femenino , Membrana Basal Glomerular/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fallo Renal Crónico/orina , Masculino , Proteínas de la Membrana/genética , Nefritis Hereditaria/orina , Proteinuria/orina , ARN Mensajero/aislamiento & purificación
11.
Nephrol Dial Transplant ; 32(11): 1818-1830, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419296

RESUMEN

BACKGROUND: Podocyte depletion causes glomerulosclerosis, with persistent podocyte loss being a major factor driving disease progression. Urinary podocyte mRNA is potentially useful for monitoring disease progression in both animal models and in humans. To determine whether the same principles apply to crescentic glomerular injury, a rat model of anti-glomerular basement membrane (anti-GBM) nephritis was studied in parallel with a patient with anti-GBM nephritis. METHODS: Podocyte loss was measured by Wilms' Tumor 1-positive podocyte nuclear counting and density, glomerular epithelial protein 1 or synaptopodin-positive podocyte tuft area and urinary podocyte mRNA excretion rate. Glomerulosclerosis was evaluated by Azan staining and urinary transforming growth factor (TGF)-ß1 mRNA excretion rate. RESULTS: In the rat model, sequential kidney biopsies revealed that after a threshold of 30% podocyte loss, the degree of glomerulosclerosis was linearly associated with the degree of podocyte depletion, compatible with podocyte depletion driving the sclerotic process. Urinary podocyte mRNA correlated with the rate of glomerular podocyte loss. In treatment studies, steroids prevented glomerulosclerosis in the anti-GBM model in contrast to angiotensin II inhibition, which lacked a protective effect, and urinary podocyte and TGF-ß1 mRNA markers more accurately reflected both the amount of podocyte depletion and the degree of glomerulosclerosis compared with proteinuria under both scenarios. In a patient successfully treated for anti-GBM nephritis, urinary podocyte and TGB-ß1 mRNA reflected treatment efficacy. CONCLUSION: These results emphasize the role of podocyte depletion in anti-GBM nephritis and suggest that urinary podocyte and TGF-ß1 mRNA could serve as markers of disease progression and treatment efficacy.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/orina , Podocitos/patología , Factor de Crecimiento Transformador beta1/orina , Adulto , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/diagnóstico , Biomarcadores/orina , Progresión de la Enfermedad , Membrana Basal Glomerular/metabolismo , Humanos , Masculino , Proteinuria/patología , ARN Mensajero/orina , Ratas , Ratas Endogámicas WKY , Factor de Crecimiento Transformador beta1/genética
12.
Pediatr Nephrol ; 32(5): 823-834, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28028615

RESUMEN

BACKGROUND: Podocyte depletion, which drives progressive glomerulosclerosis in glomerular diseases, is caused by a reduction in podocyte number, size or function in the context of increasing glomerular volume. METHODS: Kidneys obtained at autopsy from premature and mature infants who died in the first year of life (n = 24) were used to measure podometric parameters for comparison with previously reported data from older kidneys. RESULTS: Glomerular volume increased 4.6-fold from 0.13 ± 0.07 µm3 x106 in the pre-capillary loop stage, through 0.35 µm3 x106 at the capillary loop, to 0.60 µm3 x106 at the mature glomerular stage. Podocyte number per glomerulus increased from 326 ± 154 per glomerulus at the pre-capillary loop stage to 584 ± 131 per glomerulus at the capillary loop stage of glomerular development to reach a value of 589 ± 166 per glomerulus in mature glomeruli. Thus, the major podocyte number increase occurs in the early stages of glomerular development, in contradistinction to glomerular volume increase, which continues after birth in association with body growth. CONCLUSIONS: As glomeruli continue to enlarge, podocyte density (number per volume) rapidly decreases, requiring a parallel rapid increase in podocyte size that allows podocyte foot processes to maintain complete coverage of the filtration surface area. Hypertrophic stresses on the glomerulus and podocyte during development and early rapid growth periods of life are therefore likely to play significant roles in determining how and when defects in podocyte structure and function due to genetic variants become clinically manifest. Therapeutic strategies aimed at minimizing mismatch between these factors may prove clinically useful.


Asunto(s)
Riñón/citología , Riñón/crecimiento & desarrollo , Podocitos/fisiología , Recuento de Células , Progresión de la Enfermedad , Femenino , Edad Gestacional , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Fallo Renal Crónico/patología , Glomérulos Renales/citología , Glomérulos Renales/crecimiento & desarrollo , Masculino , Organogénesis/fisiología , Podocitos/ultraestructura
13.
J Am Soc Nephrol ; 27(2): 482-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26054544

RESUMEN

Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level.


Asunto(s)
Albúminas/farmacocinética , Túbulos Renales Proximales/metabolismo , Animales , Femenino , Túbulos Renales Proximales/fisiología , Ratas , Ratas Wistar
14.
J Am Soc Nephrol ; 26(6): 1450-65, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25388223

RESUMEN

The attrition rate of functioning allografts beyond the first year has not improved despite improved immunosuppression, suggesting that nonimmune mechanisms could be involved. Notably, glomerulopathies may account for about 40% of failed kidney allografts beyond the first year of engraftment, and glomerulosclerosis and progression to ESRD are caused by podocyte depletion. Model systems demonstrate that nephrectomy can precipitate hypertrophic podocyte stress that triggers progressive podocyte depletion leading to ESRD, and that this process is accompanied by accelerated podocyte detachment that can be measured in urine. Here, we show that kidney transplantation "reverse nephrectomy" is also associated with podocyte hypertrophy and increased podocyte detachment. Patients with stable normal allograft function and no proteinuria had levels of podocyte detachment similar to levels in two-kidney controls as measured by urine podocyte assay. By contrast, patients who developed transplant glomerulopathy had 10- to 20-fold increased levels of podocyte detachment. Morphometric studies showed that a subset of these patients developed reduced glomerular podocyte density within 2 years of transplantation due to reduced podocyte number per glomerulus. A second subset developed glomerulopathy by an average of 10 years after transplantation due to reduced glomerular podocyte number and glomerular tuft enlargement. Reduced podocyte density was associated with reduced eGFR, glomerulosclerosis, and proteinuria. These data are compatible with the hypothesis that podocyte depletion contributes to allograft failure and reduced allograft half-life. Mechanisms may include immune-driven processes affecting the podocyte or other cells and/or hypertrophy-induced podocyte stress causing accelerated podocyte detachment, which would be amenable to nonimmune therapeutic targeting.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/patología , Fallo Renal Crónico/cirugía , Trasplante de Riñón/métodos , Podocitos/patología , Adaptación Fisiológica , Adulto , Animales , Autoinjertos , Biopsia con Aguja , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Glomeruloesclerosis Focal y Segmentaria/mortalidad , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Rechazo de Injerto , Supervivencia de Injerto , Humanos , Inmunohistoquímica , Fallo Renal Crónico/mortalidad , Fallo Renal Crónico/fisiopatología , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Podocitos/metabolismo , Complicaciones Posoperatorias/patología , Complicaciones Posoperatorias/fisiopatología , Ratas , Estudios Retrospectivos , Medición de Riesgo , Tasa de Supervivencia
15.
J Am Soc Nephrol ; 26(12): 3162-78, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26038526

RESUMEN

Kidney aging is associated with an increasing proportion of globally scarred glomeruli, decreasing renal function, and exponentially increasing ESRD prevalence. In model systems, podocyte depletion causes glomerulosclerosis, suggesting age-associated glomerulosclerosis could be caused by a similar mechanism. We measured podocyte number, size, density, and glomerular volume in 89 normal kidney samples from living and deceased kidney donors and normal poles of nephrectomies. Podocyte nuclear density decreased with age due to a combination of decreased podocyte number per glomerulus and increased glomerular volume. Compensatory podocyte cell hypertrophy prevented a change in the proportion of tuft volume occupied by podocytes. Young kidneys had high podocyte reserve (podocyte density >300 per 10(6) µm(3)), but by 70-80 years of age, average podocyte nuclear density decreased to, <100 per 10(6) µm(3), with corresponding podocyte hypertrophy. In older age podocyte detachment rate (urine podocin mRNA-to-creatinine ratio) was higher than at younger ages and podocytes were stressed (increased urine podocin-to-nephrin mRNA ratio). Moreover, in older kidneys, proteinaceous material accumulated in the Bowman space of glomeruli with low podocyte density. In a subset of these glomeruli, mass podocyte detachment events occurred in association with podocytes becoming binucleate (mitotic podocyte catastrophe) and subsequent wrinkling of glomerular capillaries, tuft collapse, and periglomerular fibrosis. In kidneys of young patients with underlying glomerular diseases similar pathologic events were identified in association with focal global glomerulosclerosis. Podocyte density reduction with age may therefore directly lead to focal global glomerulosclerosis, and all progressive glomerular diseases can be considered superimposed accelerators of this underlying process.


Asunto(s)
Envejecimiento/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Podocitos/patología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Recuento de Células , Núcleo Celular/patología , Niño , Preescolar , Humanos , Hipertrofia/patología , Persona de Mediana Edad , Tamaño de los Órganos , Adulto Joven
16.
Nephrol Dial Transplant ; 30(7): 1140-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956757

RESUMEN

BACKGROUND: Podocyte depletion is a major mechanism driving glomerulosclerosis. We and others have previously projected from model systems that podocyte-specific mRNAs in the urine pellet might serve as glomerular disease markers. We evaluated IgA nephropathy (IgAN) to test this concept. METHODS: From 2009 to 2013, early morning voided urine samples and kidney biopsies from IgAN patients (n = 67) were evaluated in comparison with urine samples from healthy age-matched volunteers (n = 28). Urine podocyte (podocin) mRNA expressed in relation to either urine creatinine concentration or a kidney tubular marker (aquaporin 2) was tested as markers. RESULTS: Urine podocyte mRNAs were correlated with the severity of active glomerular lesions (segmental glomerulosclerosis and acute extracapillary proliferation), but not with non-glomerular lesions (tubular atrophy/interstitial fibrosis) or with clinical parameters of kidney injury (serum creatinine and estimated glomerular filtration rate), or with degree of accumulated podocyte loss at the time of biopsy. In contrast, proteinuria correlated with all histological and clinical markers. Glomerular tuft podocyte nuclear density (a measure of cumulative podocyte loss) correlated with tubular atrophy/interstitial fibrosis, estimated-glomerular filtration rate and proteinuria, but not with urine podocyte markers. In a subset of the IgA cohort (n = 19, median follow-up period = 37 months), urine podocyte mRNAs were significantly decreased after treatment, in contrast to proteinuria which was not significantly changed. CONCLUSIONS: Urine podocyte mRNAs reflect active glomerular injury at a given point in time, and therefore provide both different and additional clinical information that can complement proteinuria in the IgAN decision-making paradigm.


Asunto(s)
Biomarcadores/orina , Glomerulonefritis por IGA/diagnóstico , Glomérulos Renales/patología , Podocitos/patología , ARN Mensajero/orina , Adulto , Células Cultivadas , Femenino , Tasa de Filtración Glomerular , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/orina , Humanos , Glomérulos Renales/metabolismo , Masculino , Podocitos/metabolismo , Pronóstico , Proteinuria , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Am Soc Nephrol ; 25(5): 1118-29, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24357669

RESUMEN

The reduction in podocyte density to levels below a threshold value drives glomerulosclerosis and progression to ESRD. However, technical demands prohibit high-throughput application of conventional morphometry for estimating podocyte density. We evaluated a method for estimating podocyte density using single paraffin-embedded formalin-fixed sections. Podocyte nuclei were imaged using indirect immunofluorescence detection of antibodies against Wilms' tumor-1 or transducin-like enhancer of split 4. To account for the large size of podocyte nuclei in relation to section thickness, we derived a correction factor given by the equation CF=1/(D/T+1), where T is the tissue section thickness and D is the mean caliper diameter of podocyte nuclei. Normal values for D were directly measured in thick tissue sections and in 3- to 5-µm sections using calibrated imaging software. D values were larger for human podocyte nuclei than for rat or mouse nuclei (P<0.01). In addition, D did not vary significantly between human kidney biopsies at the time of transplantation, 3-6 months after transplantation, or with podocyte depletion associated with transplant glomerulopathy. In rat models, D values also did not vary with podocyte depletion, but increased approximately 10% with old age and in postnephrectomy kidney hypertrophy. A spreadsheet with embedded formulas was created to facilitate individualized podocyte density estimation upon input of measured values. The correction factor method was validated by comparison with other methods, and provided data comparable with prior data for normal human kidney transplant donors. This method for estimating podocyte density is applicable to high-throughput laboratory and clinical use.


Asunto(s)
Técnica del Anticuerpo Fluorescente Indirecta , Podocitos/citología , Animales , Biopsia , Recuento de Células , Femenino , Humanos , Masculino , Ratones , Proteínas Nucleares/análisis , Proteínas Nucleares/inmunología , Ratas , Estándares de Referencia , Proteínas Represoras/análisis , Proteínas Represoras/inmunología , Manejo de Especímenes , Proteínas WT1/análisis , Proteínas WT1/inmunología
18.
Nat Genet ; 38(12): 1397-405, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17086182

RESUMEN

Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCepsilon1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif-containing GTPase-activating protein 1 as a new interaction partner of PLCepsilon1. Two siblings with a missense mutation in an exon encoding the PLCepsilon1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.


Asunto(s)
Mutación , Síndrome Nefrótico/enzimología , Síndrome Nefrótico/genética , Fosfolipasas de Tipo C/genética , Animales , Niño , Preescolar , Clonación Molecular , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Genes Recesivos , Homocigoto , Humanos , Lactante , Riñón/enzimología , Riñón/patología , Masculino , Modelos Genéticos , Mutación Missense , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Fosfoinositido Fosfolipasa C , Ratas , Eliminación de Secuencia , Pez Cebra/genética
19.
J Am Soc Nephrol ; 24(12): 2081-95, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24052633

RESUMEN

Model systems demonstrate that progression to ESRD is driven by progressive podocyte depletion (the podocyte depletion hypothesis) and can be noninvasively monitored through measurement of urine pellet podocyte mRNAs. To test these concepts in humans, we analyzed urine pellet mRNAs from 358 adult and pediatric kidney clinic patients and 291 controls (n=1143 samples). Compared with controls, urine podocyte mRNAs increased 79-fold (P<0.001) in patients with biopsy-proven glomerular disease and a 50% decrease in kidney function or progression to ESRD. An independent cohort of patients with Alport syndrome had a 23-fold increase in urinary podocyte mRNAs (P<0.001 compared with controls). Urinary podocyte mRNAs increased during active disease but returned to baseline on disease remission. Furthermore, urine podocyte mRNAs increased in all categories of glomerular disease evaluated, but levels ranged from high to normal, consistent with individual patient variability in the risk for progression. In contrast, urine podocyte mRNAs did not increase in polycystic kidney disease. The association between proteinuria and podocyturia varied markedly by glomerular disease type: a high correlation in minimal-change disease and a low correlation in membranous nephropathy. These data support the podocyte depletion hypothesis as the mechanism driving progression in all human glomerular diseases, suggest that urine pellet podocyte mRNAs could be useful for monitoring risk for progression and response to treatment, and provide novel insights into glomerular disease pathophysiology.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Podocitos/fisiología , Proteinuria , Enfermedad Aguda , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/orina , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Glomeruloesclerosis Focal y Segmentaria/orina , Humanos , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Masculino , Persona de Mediana Edad , Nefrosis Lipoidea/patología , Nefrosis Lipoidea/fisiopatología , Nefrosis Lipoidea/orina , Síndrome Nefrótico/patología , Síndrome Nefrótico/fisiopatología , Síndrome Nefrótico/orina , Proteinuria/patología , Proteinuria/fisiopatología , Proteinuria/orina , ARN Mensajero/fisiología , Adulto Joven
20.
J Am Soc Nephrol ; 23(8): 1351-63, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22773827

RESUMEN

Podocyte depletion leads to glomerulosclerosis, but whether an impaired capacity of podocytes to respond to hypertrophic stress also causes glomerulosclerosis is unknown. We generated transgenic Fischer 344 rats that express a dominant negative AA-4E-BP1 transgene driven by the podocin promoter; a member of the mammalian target of rapamycin complex 1 (mTORC1) pathway, 4E-BP1 modulates cap-dependent translation, which is a key determinant of a cell's hypertrophic response to nutrients and growth factors. AA-4E-BP1 rat podocytes expressed the transgene and had normal kidney histology and protein excretion at 100 g of body weight but developed ESRD by 12 months. Proteinuria and glomerulosclerosis were linearly related to both increasing body weight and transgene dose. Uni-nephrectomy reduced the body weight at which proteinuria first developed by 40%-50%. The initial histologic manifestation of disease was the appearance of bare areas of glomerular basement membrane from the pulling apart of podocyte foot processes, followed by adhesions to the Bowman capsule. Morphometric analysis confirmed the mismatch between glomerular tuft volume and total podocyte volume (number × size) per tuft in relation to weight gain and nephrectomy. Proteinuria and glomerulosclerosis did not develop if dietary calorie restriction prevented weight gain and glomerular enlargement. In summary, failure of podocytes to match glomerular tuft growth in response to growth signaling through the mTORC1 pathway can trigger proteinuria, glomerulosclerosis, and progression to ESRD. Reducing body weight and glomerular growth may be useful adjunctive therapies to slow or prevent progression to ESRD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomérulos Renales/crecimiento & desarrollo , Fosfoproteínas/metabolismo , Podocitos/fisiología , Aumento de Peso , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Restricción Calórica , Proteínas de Ciclo Celular , Glomeruloesclerosis Focal y Segmentaria/prevención & control , Heterocigoto , Homocigoto , Humanos , Hipertrofia , Masculino , Nefrectomía , Fosfoproteínas/genética , Podocitos/patología , Proteinuria/etiología , Proteinuria/prevención & control , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA