Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(35): 7881-7888, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32315472

RESUMEN

Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1 H solid-state NMR signals. Selective excitation and observation preserves 1 H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1 H{14 N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1 H{14 N} HMQC solid-state NMR experiments. 1 H{14 N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1 H{14 N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1 H{17 O} and 1 H{35 Cl} HMQC experiments on 17 O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.


Asunto(s)
Histidina/química , Núcleo Celular/química , Espectroscopía de Resonancia Magnética , Protones
2.
Mol Pharm ; 16(7): 3121-3132, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095913

RESUMEN

Active pharmaceutical ingredients (APIs) can be prepared in many different solid forms and phases that affect their physicochemical properties and suitability for oral dosage forms. The development and commercialization of dosage forms require analytical techniques that can determine and quantify the API phase in the final drug product. 13C solid-state NMR (SSNMR) spectroscopy is widely employed to characterize pure and formulated solid APIs; however, 13C SSNMR experiments on dosage forms with low API loading are often challenging due to low sensitivity and interference from excipients. Here, fast magic angle spinning 1H SSNMR experiments are shown to be applicable for the rapid characterization of low drug load formulations. Diagnostic 1H SSNMR spectra of APIs within tablets are obtained by using combinations of frequency-selective saturation and excitation pulses, two-dimensional experiments, and 1H spin diffusion periods. Selective saturation pulses efficiently suppress the broad 1H SSNMR signals from the most commonly encountered excipients such as lactose and cellulose, allowing observation of high-frequency API 1H NMR signals. 1H SSNMR provides a 1-3 orders of magnitude reduction in experiment time compared to standard 13C SSNMR experiments, enabling diagnostic SSNMR spectra of dilute APIs within tablets to be obtained within minutes. The 1H SSNMR spectra can be used for quantification, provided calibrations are performed on a standard sample with known API loading.


Asunto(s)
Isótopos de Carbono/química , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Composición de Medicamentos , Hidrógeno/química , Celulosa/química , Excipientes/química , Estudios de Factibilidad , Lactosa/química , Mexiletine/química , Ácidos Esteáricos/química , Comprimidos/química , Teofilina/química , Difracción de Rayos X
3.
Curr Opin Pharmacol ; 72: 102364, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37612173

RESUMEN

G protein-coupled receptors (GPCRs) exhibit remarkable structural plasticity, which underlies their capacity to recognize a wide range of extracellular molecules and interact with intracellular partner proteins. Nuclear magnetic resonance (NMR) spectroscopy is uniquely well-suited to investigate GPCR structural plasticity, enabled by stable-isotope "probes" incorporated into receptors that inform on structure and dynamics. Progress with stable-isotope labeling methods in Eukaryotic expression systems has enabled production of native or nearly-native human receptors with varied and complementary distributions of NMR probes. These advances have opened up new avenues for investigating the roles of conformational dynamics in signaling processes, including by mapping allosteric communication networks, understanding the specificity of GPCR interactions with partner proteins and exploring the impact of membrane environments on GPCR function.


Asunto(s)
Isótopos , Humanos , Espectroscopía de Resonancia Magnética
4.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711594

RESUMEN

G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we visualized the impact of anionic lipids on the function-related conformational equilibria of the human A 2A adenosine receptor (A 2A AR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids primed the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeded through a less favorable induced fit mechanism. In computational models, anionic lipids mimicked interactions between a G protein and positively charged residues in A 2A AR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly altered the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.

5.
Nat Commun ; 14(1): 794, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781870

RESUMEN

G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we explore the impact of anionic lipids on the function-related conformational equilibria of the human A2A adenosine receptor (A2AAR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids prime the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeds through a less favorable induced fit mechanism. In computational models, anionic lipids mimic interactions between a G protein and positively charged residues in A2AAR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly alters the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.


Asunto(s)
Proteínas de Unión al GTP , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Conformación Molecular , Transducción de Señal , Membrana Dobles de Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA