Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(7): 1172-1177, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372634

RESUMEN

The activation of the CP/LP C3 proconvertase complex is a key event in complement activation and involves cleavage of C4 and C2 by the C1s protease (classical pathway) or the mannose-binding lectin-associated serine protease (MASP)-2 (lectin pathway). Efficient cleavage of C4 by C1s and MASP-2 involves exosites on the complement control protein and serine protease (SP) domains of the proteases. The complement control protein domain exosite is not involved in cleavage of C2 by the proteases, but the role of an anion-binding exosite (ABE) on the SP domains of the proteases has (to our knowledge) never been investigated. In this study, we have shown that the ABE on the SP of both C1s and MASP-2 is crucial for efficient cleavage of C2, with mutant forms of the proteases greatly impaired in their rate of cleavage of C2. We have additionally shown that the site of binding for the ABE of the proteases is very likely to be located on the von Willebrand factor domain of C2, with the precise area differing between the enzymes: whereas C1s requires two anionic clusters on the von Willebrand factor domain to enact efficient cleavage of C2, MASP-2 apparently only requires one. These data provide (to our knowledge) new information about the molecular determinants for efficient activation of C2 by C1s and MASP-2. The enhanced view of the molecular events underlying the early stages of complement activation provides further possible intervention points for control of this activation that is involved in a number of inflammatory diseases.


Asunto(s)
Activación de Complemento , Lectina de Unión a Manosa , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Complemento C1s , Complemento C4/metabolismo , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Dominios Proteicos , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Factor de von Willebrand , Humanos , Células HEK293
2.
Chembiochem ; 25(3): e202300744, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055188

RESUMEN

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Asunto(s)
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacología , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Péptidos/farmacología , Sitios de Unión
3.
J Periodontal Res ; 58(3): 544-552, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002616

RESUMEN

BACKGROUND AND OBJECTIVE: Protease-activated receptor-2 (PAR2 ), a pro-inflammatory G-protein coupled receptor, has been associated with pathogenesis of periodontitis and the resulting bone loss caused by oral pathogens, including the keystone pathogen Porphyromonas gingivalis (P. gingivalis). We hypothesised that administration of a PAR2 antagonist, GB88, might prevent inflammation and subsequent alveolar bone resorption in a mouse model of periodontal disease. METHODS: Periodontitis was induced in mice by oral inoculations with P. gingivalis for a total of eight times over 24 days. The infected mice were treated with either GB88 or vehicle for the duration of the trial. Following euthanasia on day 56, serum was collected and used for the detection of mast cell tryptase. The right maxillae were defleshed and stained with methylene blue to measure the exposed cementum in molar teeth. The left maxillae were prepared for cryosections followed by staining for tartrate-resistant acid phosphatase to identify osteoclasts or with toluidine blue to identify mast cells. Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of inflammatory cytokines in the gingival tissue. Supernatants of T-lymphocyte cultures isolated from the regional lymph nodes were assayed using a cytometric bead array to measure the Th1/Th2/Th17 cytokine levels. RESULTS: Measurement of the exposed cementum showed that GB88 reduced P. gingivalis-induced alveolar bone loss by up to 69%. GB88 also prevented the increase in osteoclast numbers observed in the infected mice. Serum tryptase levels were significantly elevated in both the infected groups, and not altered by treatment. RT-qPCR showed that GB88 prevented the upregulation of Il1b, Il6, Ifng and Cd11b. In T-lymphocyte supernatants, only IFNγ and IL-17A levels were increased in response to infection, but this was prevented by GB88 treatment. CONCLUSIONS: GB88 significantly reduced osteoclastic alveolar bone loss in mice infected with P. gingivalis, seemingly by preventing the upregulation of several inflammatory cytokines. PAR2 antagonism may be an effective treatment strategy for periodontal disease.


Asunto(s)
Pérdida de Hueso Alveolar , Enfermedades Periodontales , Periodontitis , Ratones , Animales , Pérdida de Hueso Alveolar/patología , Receptor PAR-2 , Enfermedades Periodontales/complicaciones , Periodontitis/tratamiento farmacológico , Periodontitis/prevención & control , Periodontitis/complicaciones , Porphyromonas gingivalis , Citocinas/análisis , Inflamación , Modelos Animales de Enfermedad
4.
PLoS Genet ; 15(10): e1008435, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31613892

RESUMEN

Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Transporte de Membrana/genética , Pectobacterium/genética , Péptido Hidrolasas/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Ferredoxinas/metabolismo , Genes Bacterianos/fisiología , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Familia de Multigenes/fisiología , Operón/fisiología , Pectobacterium/metabolismo , Péptido Hidrolasas/metabolismo
5.
J Immunol ; 198(12): 4728-4737, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28484054

RESUMEN

The complement system is a front-line defense system that opsonizes and lyses invading pathogens. To survive, microbes exposed to serum must evade the complement response. To achieve this, many pathogens recruit soluble human complement regulators to their surfaces and hijack their regulatory function for protection from complement activation. C1 esterase inhibitor (C1-INH) is a soluble regulator of complement activation that negatively regulates the classical and lectin pathways of complement to protect human tissue from aberrant activation. In this article, we show that Plasmodium falciparum merozoites, the invasive form of blood stage malaria parasites, actively recruit C1-INH to their surfaces when exposed to human serum. We identified PfMSP3.1, a member of the merozoite surface protein 3 family of merozoite surface proteins, as the direct interaction partner. When bound to the merozoite surface, C1-INH retains its ability to complex with and inhibit C1s, MASP1, and MASP2, the activating proteases of the complement cascade. P. falciparum merozoites that lack PfMSP3.1 showed a marked reduction in C1-INH recruitment and increased C3b deposition on their surfaces. However, these ΔPfMSP3.1 merozoites exhibit enhanced invasion of RBCs in the presence of active complement. This study characterizes an immune-evasion strategy used by malaria parasites and highlights the complex relationship between merozoites and the complement system.


Asunto(s)
Antígenos de Protozoos/metabolismo , Activación de Complemento , Proteína Inhibidora del Complemento C1/metabolismo , Evasión Inmune , Proteínas de la Membrana/metabolismo , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Antígenos de Protozoos/inmunología , Proteína Inhibidora del Complemento C1/genética , Complemento C1s/antagonistas & inhibidores , Complemento C1s/inmunología , Complemento C1s/metabolismo , Eritrocitos/parasitología , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/antagonistas & inhibidores , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Proteínas de la Membrana/inmunología , Merozoítos/química , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo
6.
J Immunol ; 199(11): 3883-3891, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061764

RESUMEN

Complement is crucial to the immune response, but dysregulation of the system causes inflammatory disease. Complement is activated by three pathways: classical, lectin, and alternative. The classical and lectin pathways are initiated by the C1r/C1s (classical) and MASP-1/MASP-2 (lectin) proteases. Given the role of complement in disease, there is a requirement for inhibitors to control the initiating proteases. In this article, we show that a novel inhibitor, gigastasin, from the giant Amazon leech, potently inhibits C1s and MASP-2, whereas it is also a good inhibitor of MASP-1. Gigastasin is a poor inhibitor of C1r. The inhibitor blocks the active sites of C1s and MASP-2, as well as the anion-binding exosites of the enzymes via sulfotyrosine residues. Complement deposition assays revealed that gigastasin is an effective inhibitor of complement activation in vivo, especially for activation via the lectin pathway. These data suggest that the cumulative effects of inhibiting both MASP-2 and MASP-1 have a greater effect on the lectin pathway than the more potent inhibition of only C1s of the classical pathway.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complemento C1/antagonistas & inhibidores , Inactivadores del Complemento/química , Vía Clásica del Complemento/efectos de los fármacos , Lectina de Unión a Manosa de la Vía del Complemento/efectos de los fármacos , Sanguijuelas/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/antagonistas & inhibidores , Péptidos/química , Inhibidores de Serina Proteinasa/química , Animales , Dominio Catalítico/efectos de los fármacos , Células Cultivadas , Inactivadores del Complemento/farmacología , Endotelio Vascular/efectos de los fármacos , Humanos , Péptidos/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Inhibidores de Serina Proteinasa/farmacología
7.
Blood ; 128(13): 1766-76, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27338096

RESUMEN

The complement system plays a key role in innate immunity, inflammation, and coagulation. The system is delicately balanced by negative regulatory mechanisms that modulate the host response to pathogen invasion and injury. The serpin, C1-esterase inhibitor (C1-INH), is the only known plasma inhibitor of C1s, the initiating serine protease of the classical pathway of complement. Like other serpin-protease partners, C1-INH interaction with C1s is accelerated by polyanions such as heparin. Polyphosphate (polyP) is a naturally occurring polyanion with effects on coagulation and complement. We recently found that polyP binds to C1-INH, prompting us to consider whether polyP acts as a cofactor for C1-INH interactions with its target proteases. We show that polyP dampens C1s-mediated activation of the classical pathway in a polymer length- and concentration-dependent manner by accelerating C1-INH neutralization of C1s cleavage of C4 and C2. PolyP significantly increases the rate of interaction between C1s and C1-INH, to an extent comparable to heparin, with an exosite on the serine protease domain of the enzyme playing a major role in this interaction. In a serum-based cell culture system, polyP significantly suppressed C4d deposition on endothelial cells, generated via the classical and lectin pathways. Moreover, polyP and C1-INH colocalize in activated platelets, suggesting that their interactions are physiologically relevant. In summary, like heparin, polyP is a naturally occurring cofactor for the C1s:C1-INH interaction and thus an important regulator of complement activation. The findings may provide novel insights into mechanisms underlying inflammatory diseases and the development of new therapies.


Asunto(s)
Proteínas Inactivadoras del Complemento 1/metabolismo , Proteínas del Sistema Complemento/metabolismo , Polifosfatos/metabolismo , Sitios de Unión , Plaquetas/inmunología , Plaquetas/metabolismo , Células Cultivadas , Proteína Inhibidora del Complemento C1 , Complemento C1s/química , Complemento C1s/metabolismo , Complemento C2/metabolismo , Complemento C4/metabolismo , Vía Clásica del Complemento , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Heparina/metabolismo , Humanos , Técnicas In Vitro , Polifosfatos/química
8.
PLoS Pathog ; 9(1): e1003117, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23326233

RESUMEN

The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Porinas/metabolismo , Secretina/metabolismo , Vibrio cholerae/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Sitios de Unión/fisiología , Biología Computacional , Cristalización , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Klebsiella/fisiología , Datos de Secuencia Molecular , Filogenia , Porinas/química , Unión Proteica , Especificidad de la Especie , Vibrio cholerae/genética
9.
J Biol Chem ; 288(31): 22399-407, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23792966

RESUMEN

The mannose-binding lectin associated-protease-3 (MASP-3) is a member of the lectin pathway of the complement system, a key component of human innate and active immunity. Mutations in MASP-3 have recently been found to be associated with Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome, a severe developmental disorder manifested by cleft palate, intellectual disability, and skeletal abnormalities. However, the molecular basis for MASP-3 function remains to be understood. Here we characterize the substrate specificity of MASP-3 by screening against a combinatorial peptide substrate library. Through this approach, we successfully identified a peptide substrate that was 20-fold more efficiently cleaved than any other identified to date. Furthermore, we demonstrated that mutant forms of the enzyme associated with 3MC syndrome were completely inactive against this substrate. To address the structural basis for this defect, we determined the 2.6-Å structure of the zymogen form of the G666E mutant of MASP-3. These data reveal that the mutation disrupts the active site and perturbs the position of the catalytic serine residue. Together, these insights into the function of MASP-3 reveal how a mutation in this enzyme causes it to be inactive and thus contribute to the 3MC syndrome.


Asunto(s)
Anomalías Múltiples/enzimología , Blefaroptosis/enzimología , Anomalías Craneofaciales/enzimología , Craneosinostosis/enzimología , Criptorquidismo/enzimología , Cristalografía por Rayos X/métodos , Anomalías del Ojo/enzimología , Cardiopatías Congénitas/enzimología , Luxación Congénita de la Cadera/enzimología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Estrabismo/enzimología , Músculos Abdominales/anomalías , Músculos Abdominales/enzimología , Discapacidades del Desarrollo/enzimología , Activación Enzimática , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
10.
J Biol Chem ; 288(22): 15571-80, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23589288

RESUMEN

The serine protease, C1r, initiates activation of the classical pathway of complement, which is a crucial innate defense mechanism against pathogens and altered-self cells. C1r both autoactivates and subsequently cleaves and activates C1s. Because complement is implicated in many inflammatory diseases, an understanding of the interaction between C1r and its target substrates is required for the design of effective inhibitors of complement activation. Examination of the active site specificity of C1r using phage library technology revealed clear specificity for Gln at P2 and Ile at P1', which are found in these positions in physiological substrates of C1r. Removal of one or both of the Gln at P2 and Ile at P1' in the C1s substrate reduced the rate of C1r activation. Substituting a Gln residue into the P2 of the activation site of MASP-3, a protein with similar domain structure to C1s that is not normally cleaved by C1r, enabled efficient activation of this enzyme. Molecular dynamics simulations and structural modeling of the interaction of the C1s activation peptide with the active site of C1r revealed the molecular mechanisms that particularly underpin the specificity of the enzyme for the P2 Gln residue. The complement control protein domains of C1r also made important contributions to efficient activation of C1s by this enzyme, indicating that exosite interactions were also important. These data show that C1r specificity is well suited to its cleavage targets and that efficient cleavage of C1s is achieved through both active site and exosite contributions.


Asunto(s)
Complemento C1r/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Proteolisis , Dominio Catalítico , Complemento C1r/genética , Complemento C1r/metabolismo , Activación Enzimática/fisiología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Biblioteca de Péptidos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato/fisiología
11.
J Biol Chem ; 288(22): 15821-9, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23592783

RESUMEN

The complement system is an ancient innate immune defense pathway that plays a front line role in eliminating microbial pathogens. Recognition of foreign targets by antibodies drives sequential activation of two serine proteases, C1r and C1s, which reside within the complement Component 1 (C1) complex. Active C1s propagates the immune response through its ability to bind and cleave the effector molecule complement Component 4 (C4). Currently, the precise structural and biochemical basis for the control of the interaction between C1s and C4 is unclear. Here, using surface plasmon resonance, we show that the transition of the C1s zymogen to the active form is essential for C1s binding to C4. To understand this, we determined the crystal structure of a zymogen C1s construct (comprising two complement control protein (CCP) domains and the serine protease (SP) domain). These data reveal that two loops (492-499 and 573-580) in the zymogen serine protease domain adopt a conformation that would be predicted to sterically abrogate C4 binding. The transition from zymogen to active C1s repositions both loops such that they would be able to interact with sulfotyrosine residues on C4. The structure also shows the junction of the CCP1 and CCP2 domains of C1s for the first time, yielding valuable information about the exosite for C4 binding located at this position. Together, these data provide a structural explanation for the control of the interaction with C1s and C4 and, furthermore, point to alternative strategies for developing therapeutic approaches for controlling activation of the complement cascade.


Asunto(s)
Complemento C1s/química , Complemento C4/química , Precursores Enzimáticos/química , Complemento C1s/genética , Complemento C1s/metabolismo , Complemento C4/genética , Complemento C4/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
12.
J Immunol ; 189(5): 2365-73, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22855709

RESUMEN

The classical pathway of complement is crucial to the immune system, but it also contributes to inflammatory diseases when dysregulated. Binding of the C1 complex to ligands activates the pathway by inducing autoactivation of associated C1r, after which C1r activates C1s. C1s cleaves complement component C4 and then C2 to cause full activation of the system. The interaction between C1s and C4 involves active site and exosite-mediated events, but the molecular details are unknown. In this study, we identified four positively charged amino acids on the serine protease domain that appear to form a catalytic exosite that is required for efficient cleavage of C4. These residues are coincidentally involved in coordinating a sulfate ion in the crystal structure of the protease. Together with other evidence, this pointed to the involvement of sulfate ions in the interaction with the C4 substrate, and we showed that the protease interacts with a peptide from C4 containing three sulfotyrosine residues. We present a molecular model for the interaction between C1s and C4 that provides support for the above data and poses questions for future research into this aspect of complement activation.


Asunto(s)
Dominio Catalítico/inmunología , Activación de Complemento/inmunología , Complemento C1s/metabolismo , Complemento C4/metabolismo , Vía Clásica del Complemento/inmunología , Serina Proteasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión de Anticuerpos/inmunología , Complemento C4/inmunología , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo
13.
Angew Chem Int Ed Engl ; 53(15): 3947-51, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24615823

RESUMEN

Hirudin P6 is a leech-derived anti-thrombotic protein which possesses two post-translational modifications, O-glycosylation and tyrosine sulfation. In this study we report the ligation-based synthesis of a library of hirudin P6 proteins possessing homogeneous glycosylation and sulfation modifications. The nature of the modifications incorporated was shown to have a drastic effect on inhibition against both the fibrinogenolytic and amidolytic activities of thrombin and thus highlights a potential means for attenuating the biological activity of the protein.


Asunto(s)
Hirudinas/síntesis química , Procesamiento Proteico-Postraduccional/fisiología , Animales , Glicoproteínas , Glicosilación , Hirudinas/química , Estructura Molecular
14.
Biochim Biophys Acta ; 1824(1): 253-62, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21664989

RESUMEN

The lectin pathway of the complement system is activated following the binding of carbohydrate-based ligands by recognition molecules such as mannose-binding lectin (MBL) or ficolins. Engagement of the recognition molecules causes activation of associated MBL-associated serine proteases or MASPs, which in turn activate downstream complement molecules to activate the system. Two MASP genes are alternatively spliced during expression to yield 5 proteins, including three proteases (MASP-1, -2 and -3) and two truncated proteins, MAp19 and MAp44. Here we discuss what is currently known about these proteins in terms of their structure and function. MASP-2 is autoactivated following the initial binding events of the pathway and is able to subsequently activate the C4 and C2 substrates required to activate the rest of the pathway. MASP-1 is able to augment MASP-2 activation, but also appears to play other roles, although the physiological significance of these is not yet clear. The roles of the truncated Map19 and Map44 proteins and the MASP-3 protease are currently unknown. The proteases form an interesting sub-family of proteins that clearly should be the focus of future research in order to establish their biological roles. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas del Sistema Complemento/metabolismo , Lectinas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Activación de Complemento/genética , Proteínas del Sistema Complemento/genética , Genes/fisiología , Humanos , Lectinas/química , Lectinas/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Modelos Biológicos , Modelos Moleculares , Transducción de Señal/genética , Transducción de Señal/fisiología , Relación Estructura-Actividad
15.
J Biol Chem ; 286(49): 42180-42187, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21990366

RESUMEN

The ovine footrot pathogen, Dichelobacter nodosus, secretes three subtilisin-like proteases that play an important role in the pathogenesis of footrot through their ability to mediate tissue destruction. Virulent and benign strains of D. nodosus secrete the basic proteases BprV and BprB, respectively, with the catalytic domain of these enzymes having 96% sequence identity. At present, it is not known how sequence variation between these two putative virulence factors influences their respective biological activity. We have determined the high resolution crystal structures of BprV and BprB. These data reveal that that the S1 pocket of BprV is more hydrophobic but smaller than that of BprB. We show that BprV is more effective than BprB in degrading extracellular matrix components of the host tissue. Mutation of two residues around the S1 pocket of BprB to the equivalent residues in BprV dramatically enhanced its proteolytic activity against elastin substrates. Application of a novel approach for profiling substrate specificity, the Rapid Endopeptidase Profiling Library (REPLi) method, revealed that both enzymes prefer cleaving after hydrophobic residues (and in particular P1 leucine) but that BprV has more restricted primary substrate specificity than BprB. Furthermore, for P1 Leu-containing substrates we found that BprV is a significantly more efficient enzyme than BprB. Collectively, these data illuminate how subtle changes in D. nodosus proteases may significantly influence tissue destruction as part of the ovine footrot pathogenesis process.


Asunto(s)
Proteínas Bacterianas/química , Dichelobacter nodosus/metabolismo , Panadizo Interdigital/metabolismo , Serina Endopeptidasas/química , Subtilisina/química , Aminoácidos/química , Animales , Rojo Congo/farmacología , Cristalización , Cristalografía por Rayos X/métodos , Fibronectinas/química , Humanos , Cinética , Leucina/química , Modelos Biológicos , Modelos Moleculares , Fenilalanina/química , Estructura Terciaria de Proteína , Ovinos
16.
Biochemistry ; 50(48): 10499-507, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22050556

RESUMEN

Understanding the active site preferences of an enzyme is critical to the design of effective inhibitors and to gaining insights into its mechanisms of action on substrates. While the subsite specificity of thrombin is understood, it is not clear whether the enzyme prefers individual amino acids at each subsite in isolation or prefers to cleave combinations of amino acids as a motif. To investigate whether preferred peptide motifs for cleavage could be identified for thrombin, we exposed a phage-displayed peptide library to thrombin. The resulting preferentially cleaved substrates were analyzed using the technique of association rule discovery. The results revealed that thrombin selected for amino acid motifs in cleavage sites. The contribution of these hypothetical motifs to substrate cleavage efficiency was further investigated using the B1 IgG-binding domain of streptococcal protein G as a model substrate. Introduction of a P(2)-P(1)' LRS thrombin cleavage sequence within a major loop of the protein led to cleavage of the protein by thrombin, with the cleavage efficiency increasing with the length of the loop. Introduction of further P(3)-P(1) and P(1)-P(1)'-P(3)' amino acid motifs into the loop region yielded greater cleavage efficiencies, suggesting that the susceptibility of a protein substrate to cleavage by thrombin is influenced by these motifs, perhaps because of cooperative effects between subsites closest to the scissile peptide bond.


Asunto(s)
Modelos Químicos , Trombina/química , Trombina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófago M13/química , Bacteriófago M13/genética , Hidrólisis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Biblioteca de Péptidos , Ingeniería de Proteínas/métodos , Distribución Aleatoria , Reproducibilidad de los Resultados , Streptococcus , Especificidad por Sustrato/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
J Biol Chem ; 285(16): 11793-9, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20164177

RESUMEN

Nerve growth factor (NGF) plays an important role in regulating mammalian neuronal/embryonic development, angiogenesis, and other physiological processes and has recently been investigated as a potential treatment for the neurodegenerative disorder, Alzheimer disease. In this study, we provide evidence that human NGF may also function as a metalloproteinase inhibitor, based on studies of NGF from snake venom. Originally, our aim was to isolate snake venom metalloproteinases targeting platelet receptors and/or ligands relevant to hemostasis and thrombosis, using Ni(2+)-agarose as a purification step based on the conserved metal ion-coordination motif in venom metalloproteinases. However, subsequent analysis of cobra (Naja kaouthia) venom led to the unexpected discovery that cobra venom NGF bound to Ni(2+)-agarose, eluting at approximately 15 mm imidazole, enabling a one-step purification. The identity of the purified protein was confirmed by mass spectrometry and N-terminal sequence analysis. Partial co-purification of NGF within metalloproteinase-enriched venom fractions led us to test whether NGF affected metalloproteinase activity. Venom NGF potently inhibited metalloproteinases isolated from the same or different venom and specifically bound to purified Nk metalloproteinase immobilized on agarose beads. Human NGF also interacted with human metalloproteinases because it blocked metalloproteinase-mediated shedding of the platelet collagen receptor, glycoprotein (GP)VI, and associated with recombinant ADAM10 by surface plasmon resonance. Together, these results suggest that NGF can function as a metalloproteinase inhibitor.


Asunto(s)
Desintegrinas/antagonistas & inhibidores , Metaloproteasas/antagonistas & inhibidores , Factor de Crecimiento Nervioso/farmacología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Secuencia de Aminoácidos , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Cromatografía en Agarosa , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/farmacología , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/aislamiento & purificación , Níquel , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
18.
Adv Exp Med Biol ; 712: 15-29, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21660656

RESUMEN

Periodontitis is a disease affecting the supporting structures of the teeth. The most severe forms of the disease result in tooth loss and have recently been strongly associated with systemic diseases, including cardiovascular and lung diseases and cancer. The disease is caused by biofilms of predominantly anaerobic bacteria. A major pathogen associated with severe, adult forms of the disease is Porphyromonas gingivalis. This organism produces potent cysteine proteases known as gingipains, which have specificity for cleavage after arginine or lysine residues. The lysine-specific gingipain, Kgp, appears to be the major virulence factor of this organism and here we describe its structure and function. We also discuss the inhibitors of the enzyme produced to date and the potential pathways to newer versions of such molecules that will be required to combat periodontitis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/patogenicidad , Adhesinas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis/efectos de los fármacos , Cisteína Endopeptidasas/química , Cisteína-Endopeptidasas Gingipaínas , Enfermedades Periodontales/microbiología , Porphyromonas gingivalis/efectos de los fármacos , Inhibidores de Proteasas/farmacología
19.
J Biol Chem ; 284(49): 34413-22, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19812030

RESUMEN

The scabies mite, Sarcoptes scabiei var. hominis, infests human skin, causing allergic reactions and facilitating bacterial infection by Streptococcus sp., with serious consequences such as rheumatic fever and rheumatic heart disease. To identify a possible drug target or vaccine candidate protein, we searched for homologues of the group 3 allergen of house dust mites, which we subsequently identified in a cDNA library. The native protein, designated Sar s 3, was shown to be present in the mite gut and excreted in fecal pellets into mite burrows within the upper epidermis. The substrate specificity of proteolytically active recombinant rSar s 3 was elucidated by screening a bacteriophage library. A preference for substrates containing a RS(G/A) sequence at the P1-P2' positions was revealed. A series of peptides synthesized as internally quenched fluorescent substrates validated the phage display data and high performance liquid chromatography/mass spectrometry analysis of the preferred cleaved substrate and confirmed the predicted cleavage site. Searches of the human proteome using sequence data from the phage display allowed the in silico prediction of putative physiological substrates. Among these were numerous epidermal proteins, with filaggrin being a particularly likely candidate substrate. We showed that recombinant rSar s 3 cleaves human filaggrin in vitro and obtained immunohistological evidence that the filaggrin protein is ingested by the mite. This is the first report elucidating the substrate specificity of Sar s 3 and its potential role in scabies mite biology.


Asunto(s)
Antígenos Dermatofagoides/química , Sarcoptes scabiei/química , Serina Proteasas/química , Animales , Bacteriófagos/metabolismo , Femenino , Proteínas Filagrina , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Filamentos Intermediarios/química , Ratones , Ratones Endogámicos C57BL , Ácaros , Biblioteca de Péptidos , Pichia/metabolismo , Proteínas Recombinantes/química , Especificidad por Sustrato
20.
Mol Immunol ; 126: 8-13, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717572

RESUMEN

The serpin, C1-inhibitor (also known as SERPING1), plays a vital anti-inflammatory role in the body by controlling pro-inflammatory pathways such as complement and coagulation. The inhibitor's action is enhanced in the presence of polyanionic cofactors, such as heparin and polyphosphate, by increasing the rate of association with key enzymes such as C1s of the classical pathway of complement. The cofactor binding site of the serpin has never been mapped. Here we show that residues Lys284, Lys285 and Arg287 of C1-inhibitor play key roles in binding heparin and delivering the rate enhancement seen in the presence of polyanions and thus most likely represent the key cofactor binding residues for the serpin. We also show that simultaneous binding of the anion binding site of C1s by the polyanion is required to deliver the rate enhancement. Finally, we have shown that it is unlikely that the two positively charged zones of C1-inhibitor and C1s interact in the encounter complex between molecules as ablation of the charged zones did not in itself deliver a rate enhancement as might have been expected if the zones interacted. These insights provide crucial information as to the mechanism of action of this key serpin in the presence and absence of cofactor molecules.


Asunto(s)
Proteína Inhibidora del Complemento C1/metabolismo , Complemento C1s/antagonistas & inhibidores , Polímeros/metabolismo , Sitios de Unión/genética , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/aislamiento & purificación , Complemento C1s/metabolismo , Heparina/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Polielectrolitos , Polifosfatos/metabolismo , Unión Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA