Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 42(13): 8473-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24990377

RESUMEN

Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Transcripción Genética , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/química , Línea Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo , Rayos Ultravioleta
2.
EMBO J ; 28(8): 1111-20, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19279666

RESUMEN

Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5' to the lesion by ERCC1-XPF and 3' to the lesion by XPG leads to the removal of a lesion-containing oligonucleotide of about 30 nucleotides. The resulting single-stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1-XPF and XPG, we show that the 5' incision by ERCC1-XPF precedes the 3' incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a 'cut-patch-cut-patch' mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/metabolismo , Animales , Dominio Catalítico , Línea Celular , ADN/genética , ADN/efectos de la radiación , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos Ultravioleta
3.
PLoS Genet ; 6(3): e1000871, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20221251

RESUMEN

Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV-induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPF(R153P)) were compared to an XP-causing mutation (XPF(R799W)) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPF(R153P)-YFP expressed in Xpf mutant cells. In addition, microinjection of XPF(R153P)-ERCC1 into the nucleus of XPF-deficient human cells restored nucleotide excision repair of UV-induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Xerodermia Pigmentosa/enzimología , Sustitución de Aminoácidos/genética , Animales , Células CHO , Supervivencia Celular , Cricetinae , Cricetulus , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Técnica del Anticuerpo Fluorescente , Humanos , Mutación/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología
4.
Nat Genet ; 36(7): 714-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220921

RESUMEN

DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair-deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth TFIIH subunit (TFB5) was recently identified in yeast. Here, we describe the identification of the human TFB5 ortholog and its association with human TFIIH. Microinjection of cDNA encoding TFB5 (GTF2H5, also called TTDA) corrected the DNA-repair defect of TTD-A cells, and we identified three functional inactivating mutations in this gene in three unrelated families with TTD-A. The GTF2H5 gene product has a role in regulating the level of TFIIH. The identification of a new evolutionarily conserved subunit of TFIIH implicated in TTD-A provides insight into TFIIH function in transcription, DNA repair and human disease.


Asunto(s)
Reparación del ADN , Factores de Transcripción TFII/fisiología , Transcripción Genética , Electroforesis en Gel de Poliacrilamida , Células HeLa , Humanos , Microinyecciones , Sistemas de Lectura Abierta , Factor de Transcripción TFIIH , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética
5.
PLoS Biol ; 7(10): e1000220, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19841728

RESUMEN

Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Recuperación de Fluorescencia tras Fotoblanqueo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción TFIIH/genética
6.
DNA Repair (Amst) ; 2(3): 325-36, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12547395

RESUMEN

Genome integrity is maintained, despite constant assault on DNA, due to the action of a variety of DNA repair pathways. Nucleotide excision repair (NER) protects the genome from the deleterious effects of UV irradiation as well as other agents that induce chemical changes in DNA bases. The mechanistic steps required for eukaryotic NER involve the concerted action of at least six proteins or protein complexes. The specificity to incise only the DNA strand including the damage at defined positions is determined by the coordinated assembly of active protein complexes onto damaged DNA. In order to understand the molecular mechanism of the NER reactions and the origin of this specificity and control we analyzed the architecture of functional NER complexes at nanometer resolution by scanning force microscopy (SFM). In the initial step of damage recognition by XPC-HR23B we observe a protein induced change in DNA conformation. XPC-HR23B induces a bend in DNA upon binding and this is stabilized at the site of damage. We discuss the importance of the XPC-HR23B-induced distortion as an architectural feature that can be exploited for subsequent assembly of an active NER complex.


Asunto(s)
Daño del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Microscopía de Fuerza Atómica
7.
Mol Cell Biol ; 31(17): 3630-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21730288

RESUMEN

Trichothiodystrophy (TTD) is a rare autosomal premature-ageing and neuroectodermal disease. The photohypersensitive form of TTD is caused by inherited mutations in three of the 10 subunits of the basal transcription factor TFIIH. TFIIH is an essential transcription initiation factor that is also pivotal for nucleotide excision repair (NER). Photosensitive TTD is explained by deficient NER, dedicated to removing UV-induced DNA lesions. TTD group A (TTD-A) patients carry mutations in the smallest TFIIH subunit, TTDA, which is an 8-kDa protein that dynamically interacts with TFIIH. TTD-A patients display a relatively mild TTD phenotype, and TTD-A primary fibroblasts exhibit moderate UV sensitivity despite a rather low level of UV-induced unscheduled DNA synthesis (UDS). To investigate the rationale of this seeming discrepancy, we studied the repair kinetics and the binding kinetics of TFIIH downstream NER factors to damaged sites in TTD-A cells. Our results show that TTD-A cells do repair UV lesions, although with reduced efficiency, and that the binding of downstream NER factors on damaged DNA is not completely abolished but only retarded. We conclude that in TTD-A cells repair is not fully compromised but only delayed, and we present a model that explains the relatively mild photosensitive phenotype observed in TTD-A patients.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , Fibroblastos/metabolismo , Síndromes de Tricotiodistrofia/genética , Western Blotting , Línea Celular , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Inmunoprecipitación de Cromatina , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Dímeros de Pirimidina/metabolismo , Factores de Tiempo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología , Rayos Ultravioleta , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
8.
DNA Repair (Amst) ; 9(7): 848-55, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20439168

RESUMEN

In the last decade, live cell fluorescence microscopy experiments have revolutionized cellular and molecular biology, enabling the localization of proteins within cellular compartments to be analysed and to determine kinetic parameters of enzymatic reactions in living nuclei to be measured. Recently, in vivo DNA labelling by DNA-stains such as DRAQ5, has provided the opportunity to measure kinetic reactions of GFP-fused proteins in targeted areas of the nucleus with different chromatin compaction levels. To verify the suitability of combining DRAQ5-staining with protein dynamic measurements, we have tested the cellular consequences of DRAQ5 DNA intercalation. We show that DRAQ5 intercalation rapidly modifies both the localization and the mobility properties of several DNA-binding proteins such as histones, DNA repair, replication and transcription factors, by stimulating a release of these proteins from their substrate. Most importantly, the effect of DRAQ5 on the mobility of essential cellular enzymes results in a potent inhibition of the corresponding cellular functions. From these observations, we suggest that great caution must be used when interpreting live cell data obtained using DRAQ5.


Asunto(s)
Antraquinonas/farmacología , Cromatina/química , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/química , ADN/química , Sustancias Intercalantes/química , Antraquinonas/química , Línea Celular , Cromatina/metabolismo , ADN/biosíntesis , ADN/genética , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Sustancias Intercalantes/farmacología , Coloración y Etiquetado/métodos , Estrés Fisiológico , Transcripción Genética/efectos de los fármacos
9.
Am J Hum Genet ; 80(3): 457-66, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17273966

RESUMEN

Nucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two progeroid syndromes: Cockayne and trichothiodystrophy syndromes. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Mutations in XPF are associated with mild XP and rarely with progeria. Mutations in ERCC1 have not been reported. Here, we describe the first case of human inherited ERCC1 deficiency. Patient cells showed moderate hypersensitivity to ultraviolet rays and mitomycin C, yet the clinical features were very severe and, unexpectedly, were compatible with a diagnosis of cerebro-oculo-facio-skeletal syndrome. This discovery represents a novel complementation group of patients with defective NER. Further, the clinical severity, coupled with a relatively mild repair defect, suggests novel functions for ERCC1.


Asunto(s)
Encéfalo/anomalías , Anomalías Craneofaciales/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Endonucleasas/deficiencia , Anomalías del Ojo/genética , Anomalías Múltiples/genética , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Endonucleasas/genética , Resultado Fatal , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Piel/citología , Síndrome
10.
Neurobiol Dis ; 23(3): 708-16, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16860562

RESUMEN

Intracellular inclusions play a profound role in many neurodegenerative diseases. Here, we report that HR23B and HR23A, proteins that are involved in both DNA repair and shuttling proteins to the 26S proteasome for degradation, accumulate in neuronal inclusions in brain from a mouse model for FXTAS, as well as in brain material from HD, SCA3, SCA7, FTDP-17 and PD patients. Interestingly, HR23B did not significantly accumulate in tau-positive aggregates (neurofibrillary tangles) from AD patients while ubiquitin did. The sequestration of HR23 proteins in intracellular inclusions did not cause detectable accumulation of their stable binding partner in DNA repair, XPC. Surprisingly, no reduction in repair capacity was observed in primary human fibroblasts that overexpressed GFP-polyQ, a polypeptide that induces HR23B-positive inclusions in these transfected cells. This illustrates that impairment of the ubiquitin-proteasome system (UPS) by expanded glutamine repeats, including the sequestration of HR23B, is not affecting NER.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Ubiquitina/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Expansión de las Repeticiones de ADN/genética , Proteínas de Unión al ADN/genética , Fibroblastos , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuronas/patología , Péptidos/genética , Péptidos/metabolismo , Péptidos/toxicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA