Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34664075

RESUMEN

Transposable elements (TEs) have been associated with many, frequently detrimental, biological roles. Consequently, the regulations of TEs, e.g. via DNA-methylation and histone modifications, are considered critical for maintaining genomic integrity and other functions. Still, the high-throughput study of TEs is usually limited to the family or consensus-sequence level because of alignment problems prompted by high-sequence similarities and short read lengths. To entirely comprehend the effects and reasons of TE expression, however, it is necessary to assess the TE expression at the level of individual instances. Our simulation study demonstrates that sequence similarities and short read lengths do not rule out the accurate assessment of (differential) expression of TEs at the instance-level. With only slight modifications to existing methods, TE expression analysis works surprisingly well for conventional paired-end sequencing data. We find that SalmonTE and Telescope can accurately tally a considerable amount of TE instances, allowing for differential expression recovery in model and non-model organisms.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Metilación de ADN , Análisis de Secuencia de ADN
2.
Proc Natl Acad Sci U S A ; 116(8): 3024-3029, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30642969

RESUMEN

Polyneoptera represents one of the major lineages of winged insects, comprising around 40,000 extant species in 10 traditional orders, including grasshoppers, roaches, and stoneflies. Many important aspects of polyneopteran evolution, such as their phylogenetic relationships, changes in their external appearance, their habitat preferences, and social behavior, are unresolved and are a major enigma in entomology. These ambiguities also have direct consequences for our understanding of the evolution of winged insects in general; for example, with respect to the ancestral habitats of adults and juveniles. We addressed these issues with a large-scale phylogenomic analysis and used the reconstructed phylogenetic relationships to trace the evolution of 112 characters associated with the external appearance and the lifestyle of winged insects. Our inferences suggest that the last common ancestors of Polyneoptera and of the winged insects were terrestrial throughout their lives, implying that wings did not evolve in an aquatic environment. The appearance of the first polyneopteran insect was mainly characterized by ancestral traits such as long segmented abdominal appendages and biting mouthparts held below the head capsule. This ancestor lived in association with the ground, which led to various specializations including hardened forewings and unique tarsal attachment structures. However, within Polyneoptera, several groups switched separately to a life on plants. In contrast to a previous hypothesis, we found that social behavior was not part of the polyneopteran ground plan. In other traits, such as the biting mouthparts, Polyneoptera shows a high degree of evolutionary conservatism unique among the major lineages of winged insects.


Asunto(s)
Evolución Biológica , Insectos/fisiología , Neoptera/fisiología , Alas de Animales/fisiología , Animales , Insectos/genética , Neoptera/genética , Filogenia
4.
BMC Genomics ; 20(1): 753, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623555

RESUMEN

BACKGROUND: The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is typically manually annotated, and this fraction often differs between species. To assess the impact of manual annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of protein-coding genes in seven diverse insect species sequenced by the i5k initiative. RESULTS: Our results show that the subset of genes chosen for manual annotation by a research community (3.5-7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily representative for a species' gene set as a whole. Nonetheless, the structural properties of automatically generated gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example a negative correlation between genome size and exonic proportion, can be inferred from either the automatically predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities. CONCLUSIONS: In our analysis of gene structural properties, automatically predicted gene models proved to be sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in these genomes can nonetheless be justifiable and informative.


Asunto(s)
Genes de Insecto/genética , Genoma de los Insectos/genética , Anotación de Secuencia Molecular , Secuencia de Aminoácidos , Composición de Base , Secuencia de Bases , Exones , Intrones
5.
BMC Genomics ; 18(1): 535, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716078

RESUMEN

BACKGROUND: The comparison of gene and genome structures across species has the potential to reveal major trends of genome evolution. However, such a comparative approach is currently hampered by a lack of standardization (e.g., Elliott TA, Gregory TR, Philos Trans Royal Soc B: Biol Sci 370:20140331, 2015). For example, testing the hypothesis that the total amount of coding sequences is a reliable measure of potential proteome diversity (Wang M, Kurland CG, Caetano-Anollés G, PNAS 108:11954, 2011) requires the application of standardized definitions of coding sequence and genes to create both comparable and comprehensive data sets and corresponding summary statistics. However, such standard definitions either do not exist or are not consistently applied. These circumstances call for a standard at the descriptive level using a minimum of parameters as well as an undeviating use of standardized terms, and for software that infers the required data under these strict definitions. The acquisition of a comprehensive, descriptive, and standardized set of parameters and summary statistics for genome publications and further analyses can thus greatly benefit from the availability of an easy to use standard tool. RESULTS: We developed a new open-source command-line tool, COGNATE (Comparative Gene Annotation Characterizer), which uses a given genome assembly and its annotation of protein-coding genes for a detailed description of the respective gene and genome structure parameters. Additionally, we revised the standard definitions of gene and genome structures and provide the definitions used by COGNATE as a working draft suggestion for further reference. Complete parameter lists and summary statistics are inferred using this set of definitions to allow down-stream analyses and to provide an overview of the genome and gene repertoire characteristics. COGNATE is written in Perl and freely available at the ZFMK homepage ( https://www.zfmk.de/en/COGNATE ) and on github ( https://github.com/ZFMK/COGNATE ). CONCLUSION: The tool COGNATE allows comparing genome assemblies and structural elements on multiples levels (e.g., scaffold or contig sequence, gene). It clearly enhances comparability between analyses. Thus, COGNATE can provide the important standardization of both genome and gene structure parameter disclosure as well as data acquisition for future comparative analyses. With the establishment of comprehensive descriptive standards and the extensive availability of genomes, an encompassing database will become possible.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Programas Informáticos , Genómica
6.
BMC Evol Biol ; 14(1): 52, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24646345

RESUMEN

BACKGROUND: Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups. RESULTS: In our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees. CONCLUSIONS: Our phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult's flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.


Asunto(s)
Evolución Biológica , Insectos/clasificación , Insectos/genética , Animales , Escarabajos/anatomía & histología , Escarabajos/genética , Genes de Insecto , Himenópteros/anatomía & histología , Himenópteros/genética , Insectos/anatomía & histología , Insectos/crecimiento & desarrollo , Larva/anatomía & histología , Oviposición , Filogenia , Transcriptoma
7.
Commun Biol ; 6(1): 147, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737661

RESUMEN

Cuticular hydrocarbons (CHCs) cover the cuticle of insects and serve as desiccation barrier and as semiochemicals. While the main enzymatic steps of CHC biosynthesis are well understood, few of the underlying genes have been identified. Here we show how exploitation of intrasexual CHC dimorphism in a mason wasp, Odynerus spinipes, in combination with whole-genome sequencing and comparative transcriptomics facilitated identification of such genes. RNAi-mediated knockdown of twelve candidate gene orthologs in the honey bee, Apis mellifera, confirmed nine genes impacting CHC profile composition. Most of them have predicted functions consistent with current knowledge of CHC metabolism. However, we found first-time evidence for a fatty acid amide hydrolase also influencing CHC profile composition. In situ hybridization experiments furthermore suggest trophocytes participating in CHC biosynthesis. Our results set the base for experimental CHC profile manipulation in Hymenoptera and imply that the evolutionary origin of CHC biosynthesis predates the arthropods' colonization of land.


Asunto(s)
Avispas , Abejas/genética , Animales , Avispas/genética , Caracteres Sexuales , Evolución Biológica , Feromonas , Hidrocarburos
8.
Methods Mol Biol ; 1962: 269-281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020567

RESUMEN

Comprehensive structural characterization of protein-coding gene repertoires is a crucial step to identify differences and commonalities in comparative genomics contexts. This requires a descriptive set of standardized parameters as well as summary statistics of, e.g., gene lengths and exon counts. We developed the tool COGNATE to gather this data from a given structural annotation file in combination with the corresponding genome assembly with a single simple command line call. COGNATE relies on clearly stated parameter definitions and thus serves to enhance dataset comparability. Here, it is shown how the tool can be used; special attention is given to input formatting.


Asunto(s)
Genómica/métodos , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Exones , Genoma , Internet
9.
Genome Biol Evol ; 8(12): 3685-3695, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28172869

RESUMEN

Trait loss is a widespread phenomenon with pervasive consequences for a species' evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.


Asunto(s)
Genes de Insecto , Reproducción Asexuada , Avispas/genética , Animales , Femenino , Masculino , Mutación , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Avispas/fisiología
10.
Biodivers Data J ; (3): e5176, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175612

RESUMEN

Three populations of the pill millipede genus Trachysphaera Heller 1858 are present in Great Britain, one on the Isle of Wight, one in South Wales and one in mid-Wales. To identify and characterize the British Trachysphaera populations, the intraspecific and interspecific variation of the populations in South Wales and on the Isle of Wight were studied and evaluated in a first integrative study of members of Trachysphaera, utilizing barcoding and SEM. DNA was extracted from 28 British Trachysphaera and 10 French T. lobata (Ribaut 1954) specimens, one each of French T. cf. drescoi (Conde and Demange 1961) and T. pyrenaica (Ribaut 1908), and one of Spanish T. cf. rousseti (Demange 1959); the barcoding fragment of the COI gene was amplified and their genetic intra- and interpopulation distances compared with one another using two Italian T. spp. and one Croatian T. schmidti Heller 1858 specimens as near outgroups. To compare the genetic distances with the morphological characters, 15 characters of a total of 13 British Trachysphaera, together with two specimens of T.pyrenaica, two T. cf. drescoi and one of T. cf. rousseti were imaged, using the same individuals utilized for DNA extraction. Albeit both British populations are genetically distant, they are closely related (1.9-2.5% p-distance) to French T.lobata, corroborating results of earlier studies. Between different Trachysphaera species, genetic distance was high (16.7-18.8%). The morphological study showed the non-reliability of key taxonomic characters in Trachysphaera, with genetically identical individuals exhibiting morphological variation, especially on the telopods. The only observed morphological characters constant within and different between species were the number of rows of sclerotized bacilli on the tergites, as well as the shape of the male and female anal shield. Both, barcoding and the morphological study identify the British Trachysphaera populations as T. lobata.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA