Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 42(15): e113565, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37305927

RESUMEN

BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.


Asunto(s)
Nucleosomas , Proteínas Supresoras de Tumor , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ubiquitinación , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromatina
2.
Mol Biol Evol ; 39(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35587583

RESUMEN

The rapid evolution of fertilization proteins has generated remarkable diversity in molecular structure and function. Glycoproteins of vertebrate egg coats contain multiple zona pellucida (ZP)-N domains (1-6 copies) that facilitate multiple reproductive functions, including species-specific sperm recognition. In this report, we integrate phylogenetics and machine learning to investigate how ZP-N domains diversify in structure and function. The most C-terminal ZP-N domain of each paralog is associated with another domain type (ZP-C), which together form a "ZP module." All modular ZP-N domains are phylogenetically distinct from nonmodular or free ZP-N domains. Machine learning-based classification identifies eight residues that form a stabilizing network in modular ZP-N domains that is absent in free domains. Positive selection is identified in some free ZP-N domains. Our findings support that strong purifying selection has conserved an essential structural core in modular ZP-N domains, with the relaxation of this structural constraint allowing free N-terminal domains to functionally diversify.


Asunto(s)
Proteínas del Huevo , Zona Pelúcida , Secuencia de Aminoácidos , Animales , Proteínas del Huevo/análisis , Proteínas del Huevo/química , Proteínas del Huevo/genética , Vertebrados/genética , Vertebrados/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/metabolismo
3.
J Immunol ; 206(6): 1240-1250, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33536255

RESUMEN

Intradermal vaccination with Mycobacterium bovis bacillus Calmette-Guérin (BCG) protects infants from disseminated tuberculosis, and i.v. BCG protects nonhuman primates (NHP) against pulmonary and extrapulmonary tuberculosis. In humans and NHP, protection is thought to be mediated by T cells, which typically recognize bacterial peptide Ags bound to MHC proteins. However, during vertebrate evolution, T cells acquired the capacity to recognize lipid Ags bound to CD1a, CD1b, and CD1c proteins expressed on APCs. It is unknown whether BCG induces T cell immunity to mycobacterial lipids and whether CD1-restricted T cells are resident in the lung. In this study, we developed and validated Macaca mulatta (Mamu) CD1b and CD1c tetramers to probe ex vivo phenotypes and functions of T cells specific for glucose monomycolate (GMM), an immunodominant mycobacterial lipid Ag. We discovered that CD1b and CD1c present GMM to T cells in both humans and NHP. We show that GMM-specific T cells are expanded in rhesus macaque blood 4 wk after i.v. BCG, which has been shown to protect NHP with near-sterilizing efficacy upon M. tuberculosis challenge. After vaccination, these T cells are detected at high frequency within bronchoalveolar fluid and express CD69 and CD103, markers associated with resident memory T cells. Thus, our data expand the repertoire of T cells known to be induced by whole cell mycobacterial vaccines, such as BCG, and show that lipid Ag-specific T cells are resident in the lungs, where they may contribute to protective immunity.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacuna BCG/administración & dosificación , Glucolípidos/inmunología , Linfocitos T/inmunología , Tuberculosis/prevención & control , Adolescente , Animales , Antígenos Bacterianos/metabolismo , Antígenos CD1/metabolismo , Línea Celular , Niño , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Glicoproteínas/metabolismo , Voluntarios Sanos , Humanos , Inyecciones Intravenosas , Pulmón/citología , Pulmón/inmunología , Pulmón/microbiología , Macaca mulatta , Masculino , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Cultivo Primario de Células , Linfocitos T/metabolismo , Tuberculosis/sangre , Tuberculosis/inmunología , Tuberculosis/microbiología
4.
J Proteome Res ; 21(4): 1124-1136, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234472

RESUMEN

The use of multiple proteases has been shown to increase protein sequence coverage in proteomics experiments; however, due to the additional analysis time required, it has not been widely adopted in routine data-dependent acquisition (DDA) proteomic workflows. Alternatively, data-independent acquisition (DIA) has the potential to analyze multiplexed samples from different protease digests, but has been primarily optimized for fragmenting tryptic peptides. Here we evaluate a DIA multiplexing approach that combines three proteolytic digests (Trypsin, AspN, and GluC) into a single sample. We first optimize data acquisition conditions for each protease individually with both the canonical DIA fragmentation mode (beam type CID), as well as resonance excitation CID, to determine optimal consensus conditions across proteases. Next, we demonstrate that application of these conditions to a protease-multiplexed sample of human peptides results in similar protein identifications and quantitative performance as compared to trypsin alone, but enables up to a 63% increase in peptide detections, and a 45% increase in nonredundant amino acid detections. Nontryptic peptides enabled noncanonical protein isoform determination and resulted in 100% sequence coverage for numerous proteins, suggesting the utility of this approach in applications where sequence coverage is critical, such as protein isoform analysis.


Asunto(s)
Proteoma , Proteómica , Secuencia de Aminoácidos , Humanos , Péptido Hidrolasas/genética , Péptidos/química , Proteoma/genética , Proteómica/métodos
5.
J Proteome Res ; 20(4): 1951-1965, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33729787

RESUMEN

Library searching is a powerful technique for detecting peptides using either data independent or data dependent acquisition. While both large-scale spectrum library curators and deep learning prediction approaches have focused on beam-type CID fragmentation (HCD), resonance CID fragmentation remains a popular technique. Here we demonstrate an approach to model the differences between HCD and CID spectra, and present a software tool, CIDer, for converting libraries between the two fragmentation methods. We demonstrate that just using a combination of simple linear models and basic principles of peptide fragmentation, we can explain up to 43% of the variation between ions fragmented by HCD and CID across an array of collision energy settings. We further show that in some circumstances, searching converted CID libraries can detect more peptides than searching existing CID libraries or libraries of machine learning predictions from FASTA databases. These results suggest that leveraging information in existing libraries by converting between HCD and CID libraries may be an effective interim solution while large-scale CID libraries are being developed.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Iones , Péptidos , Programas Informáticos
6.
Mol Reprod Dev ; 88(7): 500-515, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34148267

RESUMEN

Ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Ecological and behavioral factors have been suggested to underlie stickleback reproductive isolation and incipient speciation, but reproductive proteins mediating gamete recognition during fertilization have so far remained unexplored. To begin to investigate the contribution of reproductive proteins to stickleback reproductive isolation, we have characterized the stickleback egg coat proteome. We find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3, as in other teleost fish. Our molecular evolutionary analyses indicate that across teleosts, ZP3 but not ZP1 has experienced positive Darwinian selection. Mammalian ZP3 is also rapidly evolving, and surprisingly some residues under selection in stickleback and mammalian ZP3 directly align. Despite broad homology, however, we find differences between mammalian and stickleback ZP proteins with respect to glycosylation, disulfide bonding, and sites of synthesis. Taken together, the changes we observe in stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.


Asunto(s)
Proteínas del Huevo/fisiología , Oocitos/fisiología , Smegmamorpha/metabolismo , Animales , Citoprotección/fisiología , Proteínas del Huevo/metabolismo , Femenino , Oocitos/citología , Oocitos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica , Zona Pelúcida/metabolismo , Zona Pelúcida/fisiología , Glicoproteínas de la Zona Pelúcida/análisis , Glicoproteínas de la Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/fisiología
7.
Proc Natl Acad Sci U S A ; 115(6): 1310-1315, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29348201

RESUMEN

Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.


Asunto(s)
Evolución Molecular , Mucoproteínas/química , Espermatozoides/química , Animales , Sitios de Unión , Gastrópodos/química , Espectroscopía de Resonancia Magnética , Masculino , Modelos Moleculares , Simulación de Dinámica Molecular , Mucoproteínas/genética , Mucoproteínas/metabolismo , Mutagénesis Sitio-Dirigida , Multimerización de Proteína
8.
J Immunol ; 201(3): 888-896, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29914888

RESUMEN

Human T cells that recognize lipid Ags presented by highly conserved CD1 proteins often express semi-invariant TCRs, but the true diversity of lipid Ag-specific TCRs remains unknown. We use CD1b tetramers and high-throughput immunosequencing to analyze thousands of TCRs from ex vivo-sorted or in vitro-expanded T cells specific for the mycobacterial lipid Ag, glucose monomycolate. Our results reveal a surprisingly diverse repertoire resulting from editing of germline-encoded gene rearrangements analogous to MHC-restricted TCRs. We used a distance-based metric (TCRDist) to show how this diverse TCR repertoire builds upon previously reported conserved motifs by including subject-specific TCRs. In a South African cohort, we show that TCRDist can identify clonal expansion of diverse glucose monomycolate-specific TCRs and accurately distinguish patients with active tuberculosis from control subjects. These data suggest that similar mechanisms govern the selection and expansion of peptide and lipid Ag-specific T cells despite the nonpolymorphic nature of CD1.


Asunto(s)
Antígenos CD1/inmunología , Lípidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Tuberculosis/inmunología , Adolescente , Línea Celular Tumoral , Células Cultivadas , Niño , Femenino , Humanos , Células K562 , Masculino , Mycobacterium/inmunología , Linfocitos T
9.
BMC Dev Biol ; 19(1): 10, 2019 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31029098

RESUMEN

BACKGROUND: Cell differentiation is mediated by synchronized waves of coordinated expression for hundreds to thousands of genes, and must be regulated to produce complex tissues and phenotypes. For many animal species, sexual selection has driven the development of elaborate male ornaments, requiring sex-specific differentiation pathways. One such male ornament is the pheromone-producing mental gland of the red-legged salamander (Plethodon shermani). Mental gland development follows an annual cycle of extreme hypertrophy, production of pheromones for the ~ 2 month mating season, and then complete resorption before repeating the process in the following year. At the peak of the mating season, the transcriptional and translational machinery of the mental gland are almost exclusively redirected to the synthesis of rapidly evolving pheromones. Of these pheromones, Plethodontid Modulating Factor (PMF) has experienced an unusual history: following gene duplication, the protein coding sequence diversified from positive sexual selection while the untranslated regions have been conserved by purifying selection. The molecular underpinnings that bridge the processes of gland hypertrophy, pheromone synthesis, and conservation of the untranslated regions remain to be determined. RESULTS: Using Illumina sequencing, we prepared a de novo transcriptome of the mental gland at six stages of development. Differential expression analysis and immunohistochemistry revealed that the mental gland initially adopts a highly proliferative, almost tumor-like phenotype, followed by a rapid increase in pheromone mRNA and protein. One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), which selectively and cooperatively binds the highly conserved PMF 3' UTR. CIRBP, along with other proteins associated with stress response, have seemingly been co-opted to aid in mental gland development by helping to regulate pheromone synthesis. CONCLUSIONS: The P. shermani mental gland utilizes a complex system of transcriptional and post-transcriptional gene regulation to facilitate its hypertrophication and pheromone synthesis. The data support the evolutionary interplay of coding and noncoding segments in rapid gene evolution, and necessitate the study of co-evolution between pheromone gene products and their transcriptional/translational regulators. Additionally, the mental gland could be a powerful emerging model of regulated tissue proliferation and subsequent resorption within the dermis and share molecular links to skin cancer biology.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Feromonas/genética , Salamandridae/embriología , Proteínas Anfibias/genética , Animales , Secuencia de Bases , Diferenciación Celular/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Proteínas de Unión al ARN/genética , Atractivos Sexuales/genética
10.
Immunogenetics ; 71(7): 465-478, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123763

RESUMEN

Invariant NKT (iNKT) cells in both humans and non-human primates are activated by the glycolipid antigen, α-galactosylceramide (α-GalCer). However, the extent to which the molecular mechanisms of antigen recognition and in vivo phenotypes of iNKT cells are conserved among primate species has not been determined. Using an evolutionary genetic approach, we found a lack of diversifying selection in CD1 genes over 45 million years of evolution, which stands in stark contrast to the history of the MHC system for presenting peptide antigens to T cells. The invariant T cell receptor (TCR)-α chain was strictly conserved across all seven primate clades. Invariant NKT cells from rhesus macaques (Macaca mulatta) bind human CD1D-α-GalCer tetramer and are activated by α-GalCer-loaded human CD1D transfectants. The dominant TCR-ß chain cloned from a rhesus-derived iNKT cell line is nearly identical to that found in the human iNKT TCR, and transduction of the rhesus iNKT TCR into human Jurkat cells show that it is sufficient for binding human CD1D-α-GalCer tetramer. Finally, we used a 20-color flow cytometry panel to probe tissue phenotypes of iNKT cells in a cohort of rhesus macaques. We discovered several tissue-resident iNKT populations that have not been previously described in non-human primates but are known in humans, such as TCR-γδ iNKTs. These data reveal a diversity of iNKT cell phenotypes despite convergent evolution of the genes required for lipid antigen presentation and recognition in humans and non-human primates.


Asunto(s)
Antígenos CD1/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Primates/genética , Secuencia de Aminoácidos , Animales , Antígenos CD1/metabolismo , Secuencia Conservada , Evolución Molecular , Femenino , Humanos , Células Jurkat , Macaca mulatta/inmunología , Masculino , Fenotipo , Primates/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
11.
J Exp Biol ; 221(Pt 14)2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-29880633

RESUMEN

Amphibian skin is unique among vertebrate classes, containing a large number of multicellular exocrine glands that vary among species and have diverse functions. The secretions of skin glands contain a rich array of bioactive compounds including antimicrobial peptides (AMPs). Such compounds are important for amphibian innate immune responses and may protect some species from chytridiomycosis, a lethal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). While the bioactivity of skin secretions against Bd has been assessed for many amphibian taxa, similar studies are lacking for Bsal, a chytrid fungus that is especially pathogenic for salamanders. We studied the skin glands and their potential functions in an aquatic salamander, the three-toed amphiuma (Amphiuma tridactylum). Skin secretions of captive adult salamanders were analyzed by RP-HPLC and tested against the growth of Bd and Bsal using in vitro assays. We found that compounds within collected skin secretions were similar between male and female salamanders and inhibited the growth of Bd and Bsal. Thus, skin secretions that protect against Bd may also provide protection against Bsal. Histological examination of the skin glands of preserved salamanders revealed the presence of enlarged granular glands concentrated within caudal body regions. A site of potential gland specialization was identified at the tail base and may indicate specialized granular glands related to courtship and communication.


Asunto(s)
Antiinfecciosos/metabolismo , Quitridiomicetos/efectos de los fármacos , Glándulas Exocrinas/metabolismo , Micosis/veterinaria , Piel , Urodelos , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Quitridiomicetos/fisiología , Femenino , Masculino , Micosis/microbiología , Urodelos/fisiología
12.
J Chem Ecol ; 40(8): 928-39, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25179396

RESUMEN

The evolutionary success of plethodontid salamanders for ~100 MY is due partly to the use of courtship pheromones that regulate female receptivity. In ~90 % of plethodontid species, males deliver pheromones by "scratching" a female's dorsum, where pheromones diffuse transdermally into the bloodstream. However, in a single clade, representing ~10 % of Plethodon spp., males apply pheromones to the female's nares for olfactory delivery. Molecular studies have identified three major pheromone families: Plethodontid Receptivity Factor (PRF), Plethodontid Modulating Factor (PMF), and Sodefrin Precursor-like Factor (SPF). SPF and PMF genes are relatively ancient and found in all plethodontid species; however, PRF is found exclusively in the genus Plethodon - which includes species with transdermal, olfactory, and intermediate delivery behaviors. While previous proteomic analyses suggested PRF and PMF are dominant in slapping species and SPF is dominant in non-Plethodon scratching species, it was unclear how protein expression of different pheromone components may vary across delivery modes within Plethodon. Therefore, the aim of this study was to proteomically characterize the pheromones of a key scratching species in this evolutionary transition, Plethodon cinereus. Using mass spectrometry-based techniques, our data support the functional replacement of SPF by PRF in Plethodon spp. and an increase in PMF gene duplication events in both lineage-dependent and delivery-dependent manners. Novel glycosylation was observed on P. cinereus PRFs, which may modulate the metabolism and/or mechanism of action for PRF in scratching species. Cumulatively, these molecular data suggest that the replacement of pheromone components (e.g., SPF by PRF) preceded the evolutionary transition of the functional complex from transdermal to olfactory delivery.


Asunto(s)
Proteínas Anfibias/genética , Anuros/genética , Proteoma/genética , Atractivos Sexuales/genética , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo , Animales , Anuros/metabolismo , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Masculino , Datos de Secuencia Molecular , Proteoma/química , Proteoma/metabolismo , Alineación de Secuencia , Atractivos Sexuales/química , Atractivos Sexuales/metabolismo , Virginia
13.
Artículo en Inglés | MEDLINE | ID: mdl-39332818

RESUMEN

Ubiquitylation is a structurally and functionally diverse post-translational modification that involves the covalent attachment of the small protein ubiquitin to other protein substrates. Trypsin-based proteomics is the most common approach for globally identifying ubiquitylation sites. However, we estimate that such methods are unable to detect ∼40% of ubiquitylation sites in the human proteome, i.e., "the dark ubiquitylome", including many important for human health and disease. In this meta-analysis of three large ubiquitylomic data sets, we performed a series of bioinformatic analyses to assess experimental features that could aid in uniquely identifying site-specific ubiquitylation events. Spectral predictions from Prosit were compared to experimental spectra of tryptic ubiquitylated peptides, revealing previously uncharacterized fragmentation of the diGly scar. Analysis of the LysC-derived ubiquitylated peptides reveals systematic, multidimensional peptide fragmentation, including diagnostic b-ions from fragmentation of the LysC ubiquitin scar. Comprehensively, these findings provide diagnostic spectral signatures of modification events that could be applied to new analysis methods for nontryptic ubiquitylomics.

14.
PLoS One ; 18(8): e0289296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37527281

RESUMEN

Plethodontid salamanders are well known for their distinct courtship rituals and the associated pheromonal signaling. However, little is known about pheromones produced in the lone Asian plethodontid species Karsenia koreana. Here, we examined the localization patterns of proteins of the sodefrin precursor-like factor (SPF) pheromone system in K. koreana. Using an antibody generated against SPF proteins from another plethodontid, Desmognathus ocoee, we tested three types of skin glands in K. koreana males via immunohistochemistry: the mental gland and two types of dorsal tail base glands-caudal courtship glands and dorsal granular glands. SPF immunoreactivity was detected in the known courtship gland, the mental gland, as well as granular glands, but not in caudal courtship glands. Due to immunoreaction specificity, we hypothesize the proteins of the SPF system in K. koreana and D. ocoee are structurally and functionally related and are used as courtship pheromones in K. koreana. Also, we hypothesize that K. koreana males transmit SPF to the female during the tail-straddling walk via dorsal granular glands. Finally, K. koreana male caudal courtship glands may be producing SPF proteins that are not recognized by our SPF antibody or these glands may play a different role in courtship than anticipated.


Asunto(s)
Feromonas , Urodelos , Animales , Masculino , Femenino , Feromonas/metabolismo , Oligopéptidos/metabolismo , Proteínas , Anticuerpos
16.
Front Cell Dev Biol ; 10: 828947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281090

RESUMEN

Reproductive proteins evolve at unparalleled rates, resulting in tremendous diversity of both molecular composition and biochemical function between gametes of different taxonomic clades. To date, the proteomic composition of amphibian gametes is largely a molecular mystery, particularly for Urodeles (salamanders and newts) for which few genomic-scale resources exist. In this study, we provide the first detailed molecular characterization of gametes from two salamander species (Plethodon shermani and Desmognathus ocoee) that are models of reproductive behavior. Long-read PacBio transcriptome sequencing of testis and ovary of both species revealed sex-specific expression of many genes common to vertebrate gametes, including a similar expression profile to the egg coat genes of Xenopus oocytes. In contrast to broad conservation of oocyte genes, major testis transcripts included paralogs of salamander-specific courtship pheromones (PRF, PMF, and SPF) that were confirmed as major sperm proteins by mass spectrometry proteomics. Sperm-specific paralogs of PMF and SPF are likely the most abundant secreted proteins in P. shermani and D. ocoee, respectively. In contrast, sperm PRF lacks a signal peptide and may be expressed in cytoplasm. PRF pheromone genes evolved independently multiple times by repeated gene duplication of sperm PRF genes with signal peptides recovered through recombination with PMF genes. Phylogenetic analysis of courtship pheromones and their sperm paralogs support that each protein family evolved for these two reproductive contexts at distinct evolutionary time points between 17 and 360 million years ago. Our combined phylogenetic, transcriptomic and proteomic analyses of plethodontid reproductive tissues support that the recurrent co-option and recombination of TFPs and cytokine-like proteins have been a novel driving force throughout salamander evolution and reproduction.

17.
Nat Commun ; 12(1): 2220, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850123

RESUMEN

The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a "fuzzy" protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein-protein interaction.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Complejo Mediador/química , Complejo Mediador/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
18.
PLoS One ; 12(6): e0176596, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640911

RESUMEN

MicroRNA play an important role in post-transcriptional regulation of most transcripts in the human genome, but their evolution across the primate lineage is largely uncharacterized. A particular miRNA can have one to thousands of messenger RNA targets, establishing the potential for a small change in sequence or overall miRNA structure to have profound phenotypic effects. However, the majority of non-human primate miRNA is predicted solely by homology to the human genome and lacks experimental validation. In the present study, we sequenced thirteen species representing a wide range of the primate phylogeny. Hundreds of miRNA were validated, and the number of species with experimentally validated miRNA was tripled. These species include a sister taxon to humans (bonobo) and basal primates (aye-aye, mouse lemur, galago). Consistent with previous studies, we found the seed region and mature miRNA to be highly conserved across primates, with overall structural conservation of the pre-miRNA hairpin. However, there were a number of interesting exceptions, including a seed shift due to structural changes in miR-501. We also identified an increase in the number of miR-320 paralogs throughout primate evolution. Many of these non-conserved miRNA appear to regulate neuronal processes, illustrating the importance of investigating miRNA to learn more about human evolution.


Asunto(s)
Evolución Molecular , MicroARNs/genética , Primates/genética , Animales , Secuencia de Bases , Variación Genética
19.
PLoS One ; 12(3): e0174370, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28358844

RESUMEN

Chemical communication via chemosensory signaling is an essential process for promoting and modifying reproductive behavior in many species. During courtship in plethodontid salamanders, males deliver a mixture of non-volatile proteinaceous pheromones that activate chemosensory neurons in the vomeronasal epithelium (VNE) and increase female receptivity. One component of this mixture, Plethodontid Modulating Factor (PMF), is a hypervariable pheromone expressed as more than 30 unique isoforms that differ between individual males-likely driven by co-evolution with female receptors to promote gene duplication and positive selection of the PMF gene complex. Courtship trials with females receiving different PMF isoform mixtures had variable effects on female mating receptivity, with only the most complex mixtures increasing receptivity, such that we believe that sufficient isoform diversity allows males to improve their reproductive success with any female in the mating population. The aim of this study was to test the effects of isoform variability on VNE neuron activation using the agmatine uptake assay. All isoform mixtures activated a similar number of neurons (>200% over background) except for a single purified PMF isoform (+17%). These data further support the hypothesis that PMF isoforms act synergistically in order to regulate female receptivity, and different putative mechanisms are discussed.


Asunto(s)
Feromonas/metabolismo , Feromonas/fisiología , Urodelos/metabolismo , Urodelos/fisiología , Animales , Cortejo , Femenino , Inmunohistoquímica , Masculino , Neuronas/metabolismo , Reproducción/fisiología , Atractivos Sexuales/metabolismo , Atractivos Sexuales/fisiología , Olfato/fisiología
20.
J Proteomics ; 135: 12-25, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26074353

RESUMEN

UNLABELLED: Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE: Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.


Asunto(s)
Evolución Molecular , Proteómica , Reproducción/fisiología , Animales , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA