RESUMEN
OBJECTIVE: To investigate accumulation of disability in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) in a changing treatment landscape. We aimed to identify risk factors for the development of disability milestones in relation to disease duration, number of attacks, and age. METHODS: We analyzed data from individuals with NMOSD and MOGAD from the German Neuromyelitis Optica Study Group registry. Applying survival analyses, we estimated risk factors and computed time to disability milestones as defined by the Expanded Disability Status Score (EDSS). RESULTS: We included 483 patients: 298 AQP4-IgG+ NMOSD, 52 AQP4-IgG-/MOG-IgG- NMOSD patients, and 133 patients with MOGAD. Despite comparable annualized attack rates, disability milestones occurred earlier and after less attacks in NMOSD patients than MOGAD patients (median time to EDSS 3: AQP4-IgG+ NMOSD 7.7 (95% CI 6.6-9.6) years, AQP4-IgG-/MOG-IgG- NMOSD 8.7) years, MOGAD 14.1 (95% CI 10.4-27.6) years; EDSS 4: 11.9 (95% CI 9.7-14.7), 11.6 (95% lower CI 7.6) and 20.4 (95% lower CI 14.1) years; EDSS 6: 20.1 (95% CI 16.5-32.1), 20.7 (95% lower CI 11.6), and 37.3 (95% lower CI 29.4) years; and EDSS 7: 34.2 (95% lower CI 31.1) for AQP4-IgG+ NMOSD). Higher age at onset increased the risk for all disability milestones, while risk of disability decreased over time. INTERPRETATION: AQP4-IgG+ NMOSD, AQP4-IgG-/MOG-IgG- NMOSD, and MOGAD patients show distinctive relapse-associated disability progression, with MOGAD having a less severe disease course. Investigator-initiated research has led to increasing awareness and improved treatment strategies appearing to ameliorate disease outcomes for NMOSD and MOGAD. ANN NEUROL 2024;95:720-732.
Asunto(s)
Neuromielitis Óptica , Humanos , Acuaporina 4 , Glicoproteína Mielina-Oligodendrócito , Autoanticuerpos , Inmunoglobulina G , RecurrenciaRESUMEN
Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). MS patients have elevated titers of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T-cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g., by approved MS therapies, and whether it is specific for MS. 1317 peripheral blood TRB repertoire samples of healthy donors (n=409), patients with MS (n=710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n=87), myelin-oligodendrocyte-glycoprotein antibody-associated disease (n=64) and Susac's syndrome (n=47) were analyzed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous hematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, this data suggests that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to NMO, MOGAD and Susac's Syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.
RESUMEN
Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.
Asunto(s)
Narcolepsia , Análisis de la Célula Individual , Transcriptoma , Humanos , Narcolepsia/genética , Narcolepsia/líquido cefalorraquídeo , Masculino , Femenino , Adulto , Orexinas/líquido cefalorraquídeo , Orexinas/genética , Perfilación de la Expresión Génica , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Cadenas beta de HLA-DQ/genética , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: Data on cognition in patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are limited to studies with small sample sizes. Therefore, we aimed to analyse the extent, characteristics and the longitudinal course of potential cognitive deficits in patients with MOGAD. METHODS: The CogniMOG-Study is a prospective, longitudinal and multicentre observational study of 113 patients with MOGAD. Individual cognitive performance was assessed using the Paced Auditory Serial Addition Task (PASAT), the Symbol Digit Modalities Test (SDMT) and the Multiple Sclerosis Inventory Cognition (MuSIC), which are standardised against normative data from healthy controls. Cognitive performance was assessed at baseline and at 1-year and 2-year follow-up assessments. Multiple linear regression was used to analyse demographic and clinical predictors of cognitive deficits identified in previous correlation analyses. RESULTS: At baseline, the study sample of MOGAD patients showed impaired standardised performance on MuSIC semantic fluency (mean=-0.29, 95% CI (-0.47 to -0.12)) and MuSIC congruent speed (mean=-0.73, 95% CI (-1.23 to -0.23)). Around 1 in 10 patients showed deficits in two or more cognitive measures (11%). No decline in cognition was observed during the 1-year and 2-year follow-up period. Cerebral lesions were found to be negatively predictive for SDMT (B=-8.85, 95% CI (-13.57 to -4.14)) and MuSIC semantic fluency (B=-4.17, 95% CI (-6.10 to -2.25)) test performance. CONCLUSIONS: Based on these data, we conclude that MOGAD patients show reduced visuomotor processing speed and semantic fluency to the extent that the disease burden includes cerebral lesions.
RESUMEN
BACKGROUND AND PURPOSE: Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS). However, there is increasing evidence of peripheral nerve involvement. This study aims to characterize the pattern of peripheral nerve changes in patients with newly diagnosed MS using quantitative magnetic resonance (MR) neurography. METHODS: In this prospective study, 25 patients first diagnosed with MS according to the revised McDonald criteria (16 female, mean age = 32.8 ± 10.6 years) and 14 healthy controls were examined with high-resolution 3-T MR neurography of the sciatic nerve using diffusion kurtosis imaging (DKI; 20 diffusional directions, b = 0, 700, 1200 s/mm2 ) and magnetization transfer imaging (MTI). In total, 15 quantitative MR biomarkers were analyzed and correlated with clinical symptoms, intrathecal immunoglobulin synthesis, electrophysiology, and lesion load on brain and spine MR imaging. RESULTS: Patients showed decreased fractional anisotropy (mean = 0.51 ± 0.04 vs. 0.56 ± 0.03, p < 0.001), extra-axonal tortuosity (mean = 2.32 ± 0.17 vs. 2.49 ± 0.17, p = 0.008), and radial kurtosis (mean = 1.40 ± 0.23 vs. 1.62 ± 0.23, p = 0.014) and higher radial diffusivity (mean = 1.09 â 10-3 mm2 /s ± 0.16 vs. 0.98 ± 0.11 â 10-3 mm2 /s, p = 0.036) than controls. Groups did not differ in MTI. No significant association was found between MR neurography markers and clinical/laboratory parameters or CNS lesion load. CONCLUSIONS: This study provides further evidence of peripheral nerve involvement in MS already at initial diagnosis. The characteristic pattern of DKI parameters indicates predominant demyelination and suggests a primary coaffection of the peripheral nervous system in MS. This first human study using DKI for peripheral nerves shows its potential and clinical feasibility in providing novel biomarkers.
Asunto(s)
Esclerosis Múltiple , Humanos , Femenino , Adulto Joven , Adulto , Estudios Prospectivos , Esclerosis Múltiple/diagnóstico por imagen , Nervios Periféricos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Nervio Ciático , Biomarcadores , Espectroscopía de Resonancia MagnéticaRESUMEN
Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.
Asunto(s)
Trastornos del Sueño-Vigilia , Humanos , Masculino , Femenino , Proteína Ácida Fibrilar de la Glía , Estudios Retrospectivos , Inmunoglobulina G/metabolismo , Progresión de la Enfermedad , InmunoterapiaRESUMEN
Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-ß-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.
Asunto(s)
Monocitos/efectos de la radiación , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Receptor de Melanocortina Tipo 1/genética , Transcriptoma/efectos de la radiación , Vitamina D/sangre , Linfocitos B/efectos de la radiación , Estudios de Cohortes , Femenino , Variación Genética , Genotipo , Humanos , Interferón beta/farmacología , Interferón beta/uso terapéutico , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/radioterapia , Fenotipo , Fototerapia , Recurrencia , Índice de Severidad de la Enfermedad , Luz Solar , Linfocitos T/metabolismo , Linfocitos T/efectos de la radiación , Transcriptoma/genéticaRESUMEN
BACKGROUND: Septins are cytoskeletal proteins with filament forming capabilities, which have multiple roles during cell division, cellular polarization, morphogenesis, and membrane trafficking. Autoantibodies against septin-5 are associated with non-paraneoplastic cerebellar ataxia, and autoantibodies against septin-7 with encephalopathy with prominent neuropsychiatric features. Here, we report on newly identified autoantibodies against septin-3 in patients with paraneoplastic cerebellar ataxia. We also propose a strategy for anti-septin autoantibody determination. METHODS: Sera from three patients producing similar immunofluorescence staining patterns on cerebellar and hippocampal sections were subjected to immunoprecipitation followed by mass spectrometry. The identified candidate antigens, all of which were septins, were expressed recombinantly in HEK293 cells either individually, as complexes, or combinations missing individual septins, for use in recombinant cell-based indirect immunofluorescence assays (RC-IIFA). Specificity for septin-3 was further confirmed by tissue IIFA neutralization experiments. Finally, tumor tissue sections were analyzed immunohistochemically for septin-3 expression. RESULTS: Immunoprecipitation with rat cerebellum lysate revealed septin-3, -5, -6, -7, and -11 as candidate target antigens. Sera of all three patients reacted with recombinant cells co-expressing septin-3/5/6/7/11, while none of 149 healthy control sera was similarly reactive. In RC-IIFAs the patient sera recognized only cells expressing septin-3, individually and in complexes. Incubation of patient sera with five different septin combinations, each missing one of the five septins, confirmed the autoantibodies' specificity for septin-3. The tissue IIFA reactivity of patient serum was abolished by pre-incubation with HEK293 cell lysates overexpressing the septin-3/5/6/7/11 complex or septin-3 alone, but not with HEK293 cell lysates overexpressing septin-5 as control. All three patients had cancers (2 × melanoma, 1 × small cell lung cancer), presented with progressive cerebellar syndromes, and responded poorly to immunotherapy. Expression of septin-3 was demonstrated in resected tumor tissue available from one patient. CONCLUSIONS: Septin-3 is a novel autoantibody target in patients with paraneoplastic cerebellar syndromes. Based on our findings, RC-IIFA with HEK293 cells expressing the septin-3/5/6/7/11 complex may serve as a screening tool to investigate anti-septin autoantibodies in serological samples with a characteristic staining pattern on neuronal tissue sections. Autoantibodies against individual septins can then be confirmed by RC-IIFA expressing single septins.
Asunto(s)
Autoanticuerpos , Autoinmunidad , Ataxia Cerebelosa , Animales , Humanos , Ratas , Ataxia Cerebelosa/inmunología , Células HEK293 , Neuronas/metabolismoRESUMEN
OBJECTIVE: Fatigue is a frequent and severe symptom in multiple sclerosis (MS), but its pathophysiological origin remains incompletely understood. We aimed to examine the predictive value of subcortical gray matter volumes for fatigue severity at disease onset and after 4 years by applying structural equation modeling (SEM). METHODS: This multicenter cohort study included 601 treatment-naive patients with MS after the first demyelinating event. All patients underwent a standardized 3T magnetic resonance imaging (MRI) protocol. A subgroup of 230 patients with available clinical follow-up data after 4 years was also analyzed. Associations of subcortical volumes (included into SEM) with MS-related fatigue were studied regarding their predictive value. In addition, subcortical regions that have a central role in the brain network (hubs) were determined through structural covariance network (SCN) analysis. RESULTS: Predictive causal modeling identified volumes of the caudate (s [standardized path coefficient] = 0.763, p = 0.003 [left]; s = 0.755, p = 0.006 [right]), putamen (s = 0.614, p = 0.002 [left]; s = 0.606, p = 0.003 [right]) and pallidum (s = 0.606, p = 0.012 [left]; s = 0.606, p = 0.012 [right]) as prognostic factors for fatigue severity in the cross-sectional cohort. Moreover, the volume of the pons was additionally predictive for fatigue severity in the longitudinal cohort (s = 0.605, p = 0.013). In the SCN analysis, network hubs in patients with fatigue worsening were detected in the putamen (p = 0.008 [left]; p = 0.007 [right]) and pons (p = 0.0001). INTERPRETATION: We unveiled predictive associations of specific subcortical gray matter volumes with fatigue in an early and initially untreated MS cohort. The colocalization of these subcortical structures with network hubs suggests an early role of these brain regions in terms of fatigue evolution. ANN NEUROL 2022;91:192-202.
Asunto(s)
Encéfalo/diagnóstico por imagen , Fatiga/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Estudios de Cohortes , Estudios Transversales , Enfermedades Desmielinizantes/diagnóstico por imagen , Fatiga/etiología , Fatiga/fisiopatología , Femenino , Estudios de Seguimiento , Sustancia Gris/diagnóstico por imagen , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Puente/diagnóstico por imagen , Valor Predictivo de las Pruebas , Pronóstico , Putamen/diagnóstico por imagen , Adulto JovenRESUMEN
BACKGROUND: Obesity reportedly increases the risk for developing multiple sclerosis (MS), but little is known about its association with disability accumulation. METHODS: This nationwide longitudinal cohort study included 1066 individuals with newly diagnosed MS from the German National MS cohort. Expanded Disability Status Scale (EDSS) scores, relapse rates, MRI findings and choice of immunotherapy were compared at baseline and at years 2, 4 and 6 between obese (body mass index, BMI ≥30 kg/m2) and non-obese (BMI <30 kg/m2) patients and correlated with individual BMI values. RESULTS: Presence of obesity at disease onset was associated with higher disability at baseline and at 2, 4 and 6 years of follow-up (p<0.001). Median time to reach EDSS 3 was 0.99 years for patients with BMI ≥30 kg/m2 and 1.46 years for non-obese patients. Risk to reach EDSS 3 over 6 years was significantly increased in patients with BMI ≥30 kg/m2 compared with patients with BMI <30 kg/m2 after adjustment for sex, age, smoking (HR 1.87; 95% CI 1.3 to 2.6; log-rank test p<0.001) and independent of disease-modifying therapies. Obesity was not significantly associated with higher relapse rates, increased number of contrast-enhancing MRI lesions or higher MRI T2 lesion burden over 6 years of follow-up. CONCLUSIONS: Obesity in newly diagnosed patients with MS is associated with higher disease severity and poorer outcome. Obesity management could improve clinical outcome of MS.
Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/terapia , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Estudios Longitudinales , Imagen por Resonancia Magnética , Obesidad/complicaciones , Obesidad/epidemiología , Recurrencia , Progresión de la EnfermedadRESUMEN
BACKGROUND: Data on the humoral vaccine response in patients on anti-interleukin-6 (IL-6) receptor therapy remain scarce. OBJECTIVE: The main objective of our study was to investigate the humoral response after vaccination against SARS-CoV-2 in neuromyelitis optica spectrum disorder (NMOSD)/myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) patients treated with anti-IL-6 receptor therapy. Secondarily, we analyzed relapse activity timely associated with vaccination. METHODS: In this retrospective cross-sectional multicenter study, we included 15 healthy controls and 48 adult NMOSD/MOGAD patients without previous COVID-19 infection. SARS-CoV-2 spike protein antibody titers during anti-IL-6 receptor therapy were compared to anti-CD20 antibody therapy, oral immunosuppressants, and to nonimmunosuppressed individuals. RESULTS: We observed 100% seroconversion in the anti-IL-6 receptor treatment group. Titers of SARS-CoV-2 spike protein antibodies were lower compared to healthy controls (720 vs 2500 binding antibody units (BAU)/mL, p = 0.004), but higher than in the anti-CD20 (720 vs 0.4 BAU/mL, p < 0.001) and comparable to the oral immunosuppressant group (720 vs 795 BAU/mL, p = 1.0). We found no association between mRNA-based vaccines and relapse activity in patients with or without immunotherapy. CONCLUSIONS: Despite being lower than in healthy controls, the humoral vaccine response during anti-IL-6 receptor therapy was evident in all patients and substantially stronger compared to anti-CD20 treatment. No relevant disease activity occurred after mRNA vaccination against SARS-CoV-2.
Asunto(s)
COVID-19 , Neuromielitis Óptica , Humanos , Vacunas contra la COVID-19 , Estudios Transversales , Neuromielitis Óptica/terapia , Estudios Retrospectivos , SARS-CoV-2 , Inmunoterapia , Anticuerpos , Inmunosupresores/uso terapéutico , ARN Mensajero , Recurrencia , Anticuerpos Antivirales , VacunaciónRESUMEN
BACKGROUND: There is limited and inconsistent information on the prevalence of cognitive impairment in neuromyelitis optica spectrum disorders (NMOSD). OBJECTIVE: To assess cognitive performance and changes over time in NMOSD. METHODS: This study included data from 217 aquaporin-4-IgG-seropositive (80%) and double-seronegative NMOSD patients. Cognitive functions measured by Symbol Digit Modalities Test (SDMT), Paced Auditory Serial-Addition Task (PASAT), and/or Multiple Sclerosis Inventory Cognition (MuSIC) were standardized against normative data (N = 157). Intraindividual cognitive performance at 1- and 2-year follow-up was analyzed. Cognitive test scores were correlated with demographic and clinical variables and assessed with a multiple linear regression model. RESULTS: NMOSD patients were impaired in SDMT (p = 0.007), MuSIC semantic fluency (p < 0.001), and MuSIC congruent speed (p < 0.001). No significant cognitive deterioration was found at follow-up. SDMT scores were related to motor and visual disability (pBon < 0.05). No differences were found between aquaporin-4-IgG-seropositive and double-seronegative NMOSD. CONCLUSIONS: A subset of NMOSD patients shows impairment in visual processing speed and in semantic fluency regardless of serostatus, without noticeable changes during a 2-year observation period. Neuropsychological measurements should be adapted to physical and visual disabilities.
Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/complicaciones , Neuromielitis Óptica/epidemiología , Estudios Prospectivos , Acuaporina 4 , Cognición , Inmunoglobulina G , AutoanticuerposRESUMEN
BACKGROUND AND PURPOSE: Population-based studies suggest severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may trigger neurological autoimmunity including immune-mediated thrombotic thrombocytopenia. Long-term characterization of cases is warranted to facilitate patient care and inform vaccine-hesitant individuals. METHODS: In this single-center prospective case study with a median follow-up of 387 days long-term clinical, laboratory and imaging characteristics of patients with neurological autoimmunity diagnosed in temporal association (≤6 weeks) with SARS-CoV-2 vaccinations are reported. RESULTS: Follow-up data were available for 20 cases (central nervous system demyelinating diseases n = 8, inflammatory peripheral neuropathies n = 4, vaccine-induced immune thrombotic thrombocytopenia n = 3, myositis n = 2, myasthenia n = 1, limbic encephalitis n = 1, giant cell arteritis n = 1). Following therapy, the overall disability level improved (median modified Rankin Scale at diagnosis 3 vs. 1 at follow-up). The condition of two patients worsened despite immunosuppressants possibly related to their autoimmune diagnoses (limbic encephalitis n = 1, giant cell arteritis n = 1). At 12 months' follow-up, 12 patients achieved complete clinical remissions with partial responses in five and stable disease in one case. Correspondingly, autoimmune antibodies were non-detectable or titers had significantly lowered in all, and repeat imaging revealed radiological responses in most cases. Under vigilant monitoring 15 patients from our cohort underwent additional SARS-CoV-2 vaccinations (BNT162b2 n = 12, mRNA-1273 n = 3). Most patients (n = 11) received different vaccines than prior to diagnosis of neurological autoimmunity. Except for one short-lasting relapse, which responded well to steroids, re-vaccinations were well tolerated. CONCLUSIONS: In this study long-term characteristics of neurological autoimmunity encountered after SARS-CoV-2 vaccinations are defined. Outcome was favorable in most cases. Re-vaccinations were well tolerated and should be considered on an individual risk/benefit analysis.
Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Arteritis de Células Gigantes , Encefalitis Límbica , Enfermedades del Sistema Nervioso , Enfermedades del Sistema Nervioso Periférico , Humanos , Estudios de Seguimiento , SARS-CoV-2 , Vacuna BNT162 , COVID-19/prevención & control , Recurrencia Local de Neoplasia , Enfermedades Autoinmunes/etiología , Vacunación/efectos adversosRESUMEN
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterised by acute inflammation and subsequent neuro-axonal degeneration resulting in progressive neurological impairment. Aberrant immune system activation in the periphery and subsequent lymphocyte migration to the CNS contribute to the pathophysiology. Recent research has identified metabolic dysfunction as an additional feature of MS. It is already well known that energy deficiency in neurons caused by impaired mitochondrial oxidative phosphorylation results in ionic imbalances that trigger degenerative pathways contributing to white and grey matter atrophy. However, metabolic dysfunction in MS appears to be more widespread than the CNS. This review focuses on recent research assessing the metabolism and mitochondrial function in peripheral immune cells of MS patients and lymphocytes isolated from murine models of MS. Emerging evidence suggests that pharmacological modulation of lymphocytic metabolism may regulate their subtype differentiation and rebalance pro- and anti-inflammatory functions. As such, further understanding of MS immunometabolism may aid the identification of novel treatments to specifically target proinflammatory immune responses.
Asunto(s)
Esclerosis Múltiple , Humanos , Animales , Ratones , Neuronas/metabolismo , Mitocondrias/metabolismo , Linfocitos/metabolismo , Antiinflamatorios/uso terapéutico , Enfermedad CrónicaRESUMEN
BACKGROUND: In 2014, we first described novel autoantibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1-IgG/anti-Sj) in patients with autoimmune cerebellar ataxia (ACA) in this journal. Here, we provide a review of the available literature on ITPR1-IgG/anti-Sj, covering clinical and paraclinical presentation, tumour association, serological findings, and immunopathogenesis. METHODS: Review of the peer-reviewed and PubMed-listed English language literature on ITPR1-IgG/anti-Sj. In addition, we provide an illustrative report on a new patient with ITPR1-IgG-associated encephalitis with cognitive decline and psychosis. RESULTS: So far, at least 31 patients with serum ITPR1-IgG/anti-Sj have been identified (clinical information available for 21). The most common manifestations were ACA, encephalopathy with seizures, myelopathy, and (radiculo)neuropathy, including autonomic neuropathy. In 45% of cases, an underlying tumour was present, making the condition a facultative paraneoplastic neurological disorder. The neurological syndrome preceded tumour diagnosis in all but one case. In most cases, immunotherapy had only moderate or no effect. The association of ITPR1-IgG/anti-Sj with manifestations other than ACA is corroborated by the case of a 48-year-old woman with high-titre ITPR1-IgG/anti-Sj antibodies and rapid cognitive decline, affecting memory, attention and executive function, and psychotic manifestations, including hallucinations, investigated here in detail. FDG-PET revealed right-temporal glucose hypermetabolism compatible with limbic encephalitis. Interestingly, ITPR1-IgG/anti-Sj mainly belonged to the IgG2 subclass in both serum and cerebrospinal fluid (CSF) in this and further patients, while it was predominantly IgG1 in other patients, including those with more severe outcome, and remained detectable over the entire course of disease. Immunotherapy with intravenous methylprednisolone, plasma exchange, and intravenous immunoglobulins, was repeatedly followed by partial or complete recovery. Long-term treatment with cyclophosphamide was paralleled by relative stabilization, although the patient noted clinical worsening at the end of each treatment cycle. CONCLUSIONS: The spectrum of neurological manifestations associated with ITPR1 autoimmunity is broader than initially thought. Immunotherapy may be effective in some cases. Studies evaluating the frequency of ITPR1-IgG/anti-Sj in patients with cognitive decline and/or psychosis of unknown aetiology are warranted. Tumour screening is essential in patients presenting with ITPR1-IgG/anti-Sj.
Asunto(s)
Ataxia Cerebelosa , Encefalitis , Enfermedades del Sistema Nervioso Periférico , Autoanticuerpos , Proteínas Portadoras , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/etiología , Femenino , Humanos , Inmunoglobulina G , Inositol , Receptores de Inositol 1,4,5-Trifosfato , Persona de Mediana Edad , ConvulsionesRESUMEN
BACKGROUND: In neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), neutrophils are found in CNS lesions. We previously demonstrated that NMOSD neutrophils show functional deficiencies. Thus, we hypothesized that neutrophil accumulation in the CNS may be facilitated by impairments affecting mechanisms of neutrophil death. OBJECTIVE: To evaluate cell death in blood neutrophils from aquaporin-4 (AQP4)-IgG-seropositive NMOSD and MOGAD patients as well as matched healthy controls (HC) using in vitro assays. METHODS: Twenty-eight AQP4 + NMOSD and 19 MOGAD patients in stable disease phase as well as 45 age- and sex-matched HC were prospectively recruited. To induce cell death, isolated neutrophils were cultured with/without phorbol 12-myristate 13-acetate (PMA). Spontaneous and PMA-induced NETosis and apoptosis were analyzed using 7-AAD and annexin-V by flow cytometry. Caspase-3 was assessed by western blot. Myeloperoxidase-DNA complexes (MPO-DNA), MPO and elastase were evaluated by ELISA, and cell-free DNA (cfDNA) by a fluorescence-based assay. Reactive oxygen species (ROS) were evaluated by a dihydrorhodamine 123-based cytometric assay. Serum GM-CSF, IL-6, IL-8, IL-15, TNF-É and IL-10 were evaluated by multiplex assays, and neurofilament light chain (NfL) by single-molecule array assay. RESULTS: In response to PMA, neutrophils from AQP4 + NMOSD but not from MOGAD patients showed an increased survival, and subsequent reduced cell death (29.6% annexin V+ 7-AAD+) when compared to HC (44.7%, p = 0.0006). However, AQP4 + NMOSD also showed a mild increase in annexin V+ 7-AAD- early apoptotic neutrophils (24.5%) compared to HC (20.8%, p = 0.048). PMA-induced reduction of caspase-3 activation was more pronounced in HC (p = 0.020) than in AQP4 + NMOSD neutrophils (p = 0.052). No differences were observed in neutrophil-derived MPO-DNA or serum levels of MPO, elastase, IL-6, IL-8 and TNF-É. IL-15 levels were increased in both groups of patients. In AQP4 + NMOSD, an increase in cfDNA, GM-CSF and IL-10 was found in serum. A positive correlation among cfDNA and NfL was found in AQP4 + NMOSD. CONCLUSIONS: AQP4 + NMOSD neutrophils showed an increased survival capacity in response to PMA when compared to matched HC neutrophils. Although the data indicate that the apoptotic but not the NETotic response is altered in these neutrophils, additional evaluations are required to validate this observation.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neuromielitis Óptica , Forboles , Acetatos , Anexina A5 , Acuaporina 4 , Autoanticuerpos , Caspasa 3 , Muerte Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Inmunoglobulina G , Interleucina-10 , Interleucina-15 , Interleucina-6 , Interleucina-8 , Glicoproteína Mielina-Oligodendrócito/toxicidad , Miristatos , Neutrófilos , Elastasa Pancreática , Peroxidasa , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfaRESUMEN
BACKGROUND: Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. OBJECTIVE: To analyze systematically the CSF profile in COVID-19. METHODS: Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers RESULTS: The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72-50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3-240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF L-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2-4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. CONCLUSIONS: The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and 'long COVID'. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.
Asunto(s)
COVID-19/líquido cefalorraquídeo , Adulto , Barrera Hematoencefálica , COVID-19/complicaciones , Proteínas del Líquido Cefalorraquídeo/líquido cefalorraquídeo , Citocinas/líquido cefalorraquídeo , Europa (Continente) , Femenino , Humanos , Inmunidad Celular , Inmunoglobulina G/líquido cefalorraquídeo , Ácido Láctico/líquido cefalorraquídeo , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/etiología , Bandas Oligoclonales/líquido cefalorraquídeo , Estudios Retrospectivos , Punción Espinal , Síndrome Post Agudo de COVID-19RESUMEN
BACKGROUND AND PURPOSE: Population-based studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may trigger immune-mediated thrombotic thrombocytopenia (VITT) raising concerns for other autoimmune responses. The aim was to characterize neurological autoimmunity after SARS-CoV-2 vaccinations. METHODS: In this single-centre prospective case study patients with neurological autoimmunity in temporal association (≤6 weeks) with SARS-CoV-2 vaccinations and without other triggers are reported. Clinical, laboratory and imaging data were collected with a median follow-up of 49 days. RESULTS: In the study period 232,603 inhabitants from the main catchment area of our hospital (Rhein-Neckar-Kreis, county) received SARS-CoV-2 vaccinations. Twenty-one cases (new onset n = 17, flares n = 4) diagnosed a median of 11 days (range 3-23) following SARS-CoV-2 vaccinations (BNT162b2 n = 12, ChAdOx1 n = 8, mRNA-1273 n = 1) were identified. Cases included VITT with cerebral venous sinus thrombosis (n = 3), central nervous system demyelinating diseases (n = 8), inflammatory peripheral neuropathies (n = 4), myositis (n = 3), myasthenia (n = 1), limbic encephalitis (n = 1) and giant cell arteritis (n = 1). Patients were predominantly female (ratio 3.2:1) and the median age at diagnosis was 50 years (range 22-86). Therapy included administration of steroids (n = 15), intravenous immunoglobulins in patients with Guillain-Barré syndrome or VITT (n = 4), plasma exchange in cases unresponsive to steroids (n = 3) and anticoagulation in VITT. Outcomes were favourable with partial and complete remissions achieved in 71% and 24%, respectively. Two patients received their second vaccination without further aggravation of autoimmune symptoms under low-dose immunosuppressants. CONCLUSIONS: In this study various neurological autoimmune disorders encountered following SARS-CoV-2 vaccinations are characterized. Given the assumed low incidence and mostly favourable outcome of autoimmune responses, the benefits of vaccinations outweigh the comparatively small risks.
Asunto(s)
COVID-19 , Síndrome de Guillain-Barré , Enfermedades del Sistema Nervioso Periférico , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , Vacunas contra la COVID-19 , Femenino , Humanos , Persona de Mediana Edad , SARS-CoV-2 , Vacunación/efectos adversos , Adulto JovenRESUMEN
Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.
Asunto(s)
Antioxidantes/farmacología , Autoinmunidad/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Dimetilfumarato/farmacología , Inmunosupresores/farmacología , Adulto , Animales , Antioxidantes/uso terapéutico , Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Estudios de Cohortes , Dimetilfumarato/uso terapéutico , Femenino , Humanos , Inmunosupresores/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Adulto JovenRESUMEN
Recent technological advances in molecular diagnostics through liquid biopsies hold the promise to repetitively monitor tumor evolution and treatment response of brain malignancies without the need of invasive surgical tissue accrual. Here, we implemented a mass spectrometry-based protein analysis pipeline which identified hundreds of proteins in 251 cerebrospinal fluid (CSF) samples from patients with four types of brain malignancies (glioblastoma, lymphoma, brain metastasis, and leptomeningeal disease [LMD]) and from healthy individuals with a focus on glioblastoma in a retrospective and confirmatory prospective observational study. CSF proteome deregulation via disruption of the blood brain barrier appeared to be largely conserved across brain tumor entities. CSF analysis of glioblastoma patients identified two proteomic clusters that correlated with tumor size and patient survival. By integrating CSF data with proteomic analyses of matching glioblastoma tumor tissue and primary glioblastoma cells, we identified potential CSF biomarkers for glioblastoma, in particular chitinase-3-like protein 1 (CHI3L1) and glial fibrillary acidic protein (GFAP). Key findings were validated in a prospective cohort consisting of 35 glioma patients. Finally, in LMD patients who frequently undergo repeated CSF work-up, we explored our proteomic pipeline as a mean to profile consecutive CSF samples. Therefore, proteomic analysis of CSF in brain malignancies has the potential to reveal biomarkers for diagnosis and therapy monitoring.