Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 33(4): e2853, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36995347

RESUMEN

Spatial and temporal variation in fire characteristics-termed pyrodiversity-are increasingly recognized as important factors that structure wildlife communities in fire-prone ecosystems, yet there have been few attempts to incorporate pyrodiversity or post-fire habitat dynamics into predictive models of animal distributions and abundance to support post-fire management. We use the black-backed woodpecker-a species associated with burned forests-as a case study to demonstrate a pathway for incorporating pyrodiversity into wildlife habitat assessments for adaptive management. Employing monitoring data (2009-2019) from post-fire forests in California, we developed three competing occupancy models describing different hypotheses for habitat associations: (1) a static model representing an existing management tool, (2) a temporal model accounting for years since fire, and (3) a temporal-landscape model which additionally incorporates emerging evidence from field studies about the influence of pyrodiversity. Evaluating predictive ability, we found superior support for the temporal-landscape model, which showed a positive relationship between occupancy and pyrodiversity and interactions between habitat associations and years since fire. We incorporated the new temporal-landscape model into an RShiny application to make this decision-support tool accessible to decision-makers.


Asunto(s)
Ecosistema , Incendios , Animales , Animales Salvajes , Bosques , Aves
2.
J Anim Ecol ; 90(5): 1317-1327, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33638165

RESUMEN

Pyrodiversity, defined as variation in fire history and characteristics, has been shown to catalyse post-fire biodiversity in a variety of systems. However, the demographic and behavioural mechanisms driving the responses of individual species to pyrodiversity remain largely unexplored. We used a model post-fire specialist, the black-backed woodpecker (Picoides arcticus), to examine the relationship between fire characteristics and juvenile survival while controlling for confounding factors. We radio-tracked fledgling black-backed woodpeckers in burned forests of California and Washington, USA, and derived information on habitat characteristics using ground surveys and satellite data. We used hierarchical Bayesian mixed-effects models to determine the factors that influence both fledgling and annual juvenile survival, and we tested for effects of fledgling age on movement rates. Burn severity strongly affected fledgling survival, with lower survival in patches created by high-severity fire compared to patches burned at medium to low severity or left unburned. Time since leaving the nest was also a strong predictor of fledgling survival, annual juvenile survival and fledgling movement rates. Our results support the role of habitat complementation in generating species-specific benefits from variation in spatial fire characteristics-one axis of pyrodiversity-and highlight the importance of this variation under shifting fire regimes. High-severity fire provides foraging and nesting sites that support the needs of adult black-backed woodpeckers, but fledgling survival is greater in areas burned at lower severity. By linking breeding and foraging habitat with neighbouring areas of reduced predation risk, pyrodiversity may enhance the survival and persistence of animals that thrive in post-fire habitat.


Asunto(s)
Quemaduras , Incendios , Animales , Teorema de Bayes , Ecosistema , Bosques , Washingtón
3.
J Anim Ecol ; 87(5): 1484-1496, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29782655

RESUMEN

Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteristics of fires that promote postfire colonization and persistence and the spatial scales on which they operate. Using a model postfire specialist, the black-backed woodpecker (Picoides arcticus), we examined how colonization and persistence varied across two spatial scales as a function of four characteristics of fire regimes-fire severity, fire size, fire ignition date and number of years since fire. We modelled black-backed woodpecker colonization and persistence using data from 108 recently burned forests in the Sierra Nevada and southern Cascades ecoregions of California, USA, that we monitored for up to 10 years following fire. We employed a novel, spatially hierarchical, dynamic occupancy framework which differentiates colonization and persistence at two spatial scales: across fires and within fires. We found strong effects of fire characteristics on dynamic rates, with colonization and persistence declining across both spatial scales with increasing years since fire. Additionally, at sites within fires, colonization decreased with fire size and increased with fire severity and for fires with later ignition dates. Our results support the notion that different aspects of a species' environment are important for population processes at different spatial scales. As habitat quality is ephemeral for any given postfire area, our results illustrate the importance of time since fire in structuring occupancy at the fire level, with other characteristics of fires playing larger roles in determining abundance within individual fires. Our results contribute to the broader understanding of how variation in fire characteristics influences the colonization and persistence of species using ephemeral habitats, which is necessary for conserving and promoting postfire biodiversity in the context of rapidly shifting fire regimes.


Asunto(s)
Incendios , Animales , California , Ecosistema , Bosques , Nevada
4.
Proc Biol Sci ; 283(1840)2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27708152

RESUMEN

An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes.


Asunto(s)
Biodiversidad , Aves/clasificación , Incendios , Bosques , Animales , Teorema de Bayes , California , Cambio Climático
5.
PLoS One ; 18(3): e0281687, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36877704

RESUMEN

In conifer forests of western North America, wildlife populations can change rapidly in the decade following wildfire as trees die and animals respond to concomitant resource pulses that occur across multiple trophic levels. In particular, black-backed woodpeckers (Picoides arcticus) show predictable temporal increases then declines following fire; this trajectory is widely believed to be a response to the woodpeckers' main prey, woodboring beetle larvae of the families Buprestidae and Cerambycidae, but we lack understanding of how abundances of these predators and prey may be associated in time or space. Here, we pair woodpecker surveys over 10 years with surveys of woodboring beetle sign and activity, collected at 128 survey plots across 22 recent fires, to ask whether accumulated beetle sign indicates current or past black-backed woodpecker occurrence, and whether that relationship is mediated by the number of years since fire. We test this relationship using an integrative multi-trophic occupancy model. Our results demonstrate that woodboring beetle sign is a positive indicator of woodpecker presence 1-3 years following fire, an uninformative indicator from 4-6 years after fire, and a negative indicator beginning 7 years following fire. Woodboring beetle activity, itself, is temporally variable and dependent on tree species composition, with beetle sign generally accumulating over time, particularly in stands with diverse tree communities, but decreasing over time in Pinus-dominated stands where faster bark decay rates lead to brief pulses of beetle activity followed by rapid degradation of tree substrate and accumulated beetle sign. Altogether, the strong connections of woodpecker occurrence to beetle activity support prior hypotheses of how multi-trophic interactions govern rapid temporal dynamics of primary and secondary consumers in burned forests. While our results indicate that beetle sign is, at best, a rapidly shifting and potentially misleading measure of woodpecker occurrence, the better we understand the interacting mechanisms underlying temporally dynamic systems, the more successfully we will be able to predict the outcomes of management actions.


Asunto(s)
Escarabajos , Incendios , Incendios Forestales , Animales , Animales Salvajes , Aves , Árboles
6.
J Zoo Wildl Med ; 43(2): 421-4, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22779254

RESUMEN

The black-backed woodpecker (Picoides arcticus) is a species of management concern in California. As part of a study of black-backed woodpecker home range size and foraging ecology, nine birds in Lassen National Forest (Shasta and Lassen Counties, California) were radio-tracked during the 2011 breeding season. One of the marked birds was found dead after being tracked for a 10-wk period in which it successfully nested. A postmortem examination of the dead bird revealed that it was emaciated and autolyzed, with the presumptive cause being numerous spiruroid nematodes of the genus Procyrnea in the gizzard. This first observation of Procyrnea nematodes in a black-backed woodpecker is notable because the Procyrnea infection was considered lethal and because Procyrnea has been implicated in substantial die-offs in other bird species, including woodpeckers.


Asunto(s)
Enfermedades de las Aves/parasitología , Nematodos/clasificación , Infecciones por Nematodos/veterinaria , Animales , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/patología , Aves , California/epidemiología , Resultado Fatal , Enfermedades Gastrointestinales/epidemiología , Enfermedades Gastrointestinales/parasitología , Enfermedades Gastrointestinales/veterinaria , Infecciones por Nematodos/epidemiología , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/patología
7.
PLoS One ; 15(10): e0227161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052936

RESUMEN

Dispersal of whitebark pine (Pinus albicaulis Engelm.), a keystone species of many high-elevation ecosystems in western North America, depends on Clark's nutcracker (Nucifraga columbiana Wilson), a seed-caching bird with an affinity for whitebark seeds. To the extent that this dependence is mutual, declines in whitebark seed production could cause declines in nutcracker abundance. Whitebark pine is in decline across much of its range due to interacting stressors, including the non-native pathogen white pine blister rust (Cronartium ribicola J. C. Fisch.). We used avian point-count data and tree surveys from four national park units to investigate whether trends in whitebark pine can explain trends in Clark's nutcracker. Spatial trends were modeled using recent data from two parks, while temporal trends were modeled using longer time-series of nutcracker and whitebark data from two additional parks. To assess the potential dependence of nutcrackers on whitebark, we linked a model of nutcracker density (accounting for detection probability) with a model of whitebark trends, using a Bayesian framework to translate uncertainty in whitebark metrics to uncertainty in nutcracker density. In Mount Rainier National Park, temporal models showed dramatic declines in nutcracker density concurrent with significant increases in whitebark crown mortality and trees infected with white pine blister rust. However, nutcrackers did not trend with whitebark metrics in North Cascades National Park Service Complex. In spatial models of data from Yosemite National Park and Sequoia-Kings Canyon National Park, nutcracker density varied not only with local cover of whitebark but also with elevation and, in Sequoia-Kings Canyon, with cover of another species of white pine. Our results add support for the hypothesis that the mutualism between whitebark pine and Clark's nutcracker is vulnerable to disruption by blister rust, and our approach integrates data across monitoring programs to explore trends in species interactions.


Asunto(s)
Passeriformes/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Animales , Teorema de Bayes , América del Norte , Parques Recreativos , Densidad de Población , Dinámica Poblacional , Análisis Espacio-Temporal , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA