Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Scand J Med Sci Sports ; 34(3): e14581, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511417

RESUMEN

The International Olympic Committee (IOC) recently published a framework on fairness, inclusion, and nondiscrimination on the basis of gender identity and sex variations. Although we appreciate the IOC's recognition of the role of sports science and medicine in policy development, we disagree with the assertion that the IOC framework is consistent with existing scientific and medical evidence and question its recommendations for implementation. Testosterone exposure during male development results in physical differences between male and female bodies; this process underpins male athletic advantage in muscle mass, strength and power, and endurance and aerobic capacity. The IOC's "no presumption of advantage" principle disregards this reality. Studies show that transgender women (male-born individuals who identify as women) with suppressed testosterone retain muscle mass, strength, and other physical advantages compared to females; male performance advantage cannot be eliminated with testosterone suppression. The IOC's concept of "meaningful competition" is flawed because fairness of category does not hinge on closely matched performances. The female category ensures fair competition for female athletes by excluding male advantages. Case-by-case testing for transgender women may lead to stigmatization and cannot be robustly managed in practice. We argue that eligibility criteria for female competition must consider male development rather than relying on current testosterone levels. Female athletes should be recognized as the key stakeholders in the consultation and decision-making processes. We urge the IOC to reevaluate the recommendations of their Framework to include a comprehensive understanding of the biological advantages of male development to ensure fairness and safety in female sports.


Asunto(s)
Medicina Deportiva , Deportes , Femenino , Humanos , Masculino , Identidad de Género , Atletas , Testosterona
2.
Clin J Sport Med ; 33(5): e145-e151, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35350037

RESUMEN

OBJECTIVE: Concussions are common match injuries in elite rugby, and reports exist of reduced cognitive function and long-term health consequences that can interrupt or end a playing career and produce continued ill health. The aim of this study was to investigate the association between elite rugby status and 8 concussion-associated risk polymorphisms. We hypothesized that concussion-associated risk genotypes and alleles would be underrepresented in elite rugby athletes compared with nonathletes. DESIGN: A case-control genetic association study. SETTING: Institutional (university). PARTICIPANTS: Elite White male rugby athletes [n = 668, mean (SD) height 1.85 (0.07) m, mass 102 (12) kg, and age 29 (7) years] and 1015 nonathlete White men and women (48% men). INTERVENTIONS: Genotype was the independent variable, obtained by PCR of genomic DNA using TaqMan probes. MAIN OUTCOME MEASURE: Elite athlete status with groups compared using χ 2 and odds ratio (OR). RESULTS: The COMT rs4680 Met/Met (AA) genotype, Met allele possession, and Met allele frequency were lower in rugby athletes (24.8%, 74.6%, and 49.7%, respectively) than nonathletes (30.2%, 77.6%, and 54.0%; P < 0.05). The Val/Val (GG) genotype was more common in elite rugby athletes than nonathletes (OR 1.39, 95% confidence interval 1.04-1.86). No other polymorphism was associated with elite athlete status. CONCLUSIONS: Elite rugby athlete status is associated with COMT rs4680 genotype that, acting pleiotropically, could affect stress resilience and behavioral traits during competition, concussion risk, and/or recovery from concussion. Consequently, assessing COMT rs4680 genotype might aid future individualized management of concussion risk among athletes.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Humanos , Masculino , Femenino , Adulto , Rugby , Fútbol Americano/lesiones , Conmoción Encefálica/genética , Conmoción Encefálica/psicología , Polimorfismo Genético , Atletas , Catecol O-Metiltransferasa/genética
3.
Int J Sports Med ; 44(13): 941-960, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37253386

RESUMEN

The aim of this review was to critically appraise the literature concerning the genetic association with athlete status, physical performance, and injury risk in soccer. The objectives were to provide guidance on which genetic markers could potentially be used as part of future practice in soccer and to provide direction for future research in this area. The most compelling evidence identified six genetic polymorphisms to be associated with soccer athlete status (ACE I/D; ACTN3 rs1815739; AGT rs699; MCT1 rs1049434; NOS3 rs2070744; PPARA rs4253778), six with physical performance (ACTN3 rs1815739; AMPD1 rs17602729; BDNF rs6265; COL2A1 rs2070739; COL5A1 rs12722; NOS3 rs2070744), and seven with injury risk (ACTN3 rs1815739; CCL2 rs2857656; COL1A1 rs1800012; COL5A1 rs12722; EMILIN1 rs2289360; IL6 rs1800795; MMP3 rs679620). As well as replication by independent groups, large-scale genome-wide association studies are required to identify new genetic markers. Future research should also investigate the physiological mechanisms associating these polymorphisms with specific phenotypes. Further, researchers should investigate the above associations in female and non-Caucasian soccer players, as almost all published studies have recruited male participants of European ancestry. Only after robust, independently replicated genetic data have been generated, can genetic testing be considered an additional tool to potentially inform future practice in soccer.


Asunto(s)
Fútbol , Humanos , Masculino , Femenino , Fútbol/fisiología , Estudio de Asociación del Genoma Completo , Marcadores Genéticos , Genotipo , Atletas , Actinina/genética , Rendimiento Físico Funcional
4.
J Sports Sci ; 41(1): 56-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37012221

RESUMEN

Success in long-distance running relies on multiple factors including oxygen utilisation and lactate metabolism, and genetic associations with athlete status suggest elite competitors are heritably predisposed to superior performance. The Gly allele of the PPARGC1A Gly482Ser rs8192678 polymorphism has been associated with endurance athlete status and favourable aerobic training adaptations. However, the association of this polymorphism with performance amongst long-distance runners remains unclear. Accordingly, this study investigated whether rs8192678 was associated with elite status and competitive performance of long-distance runners. Genomic DNA from 656 Caucasian participants including 288 long-distance runners (201 men, 87 women) and 368 non-athletes (285 men, 83 women) was analysed. Medians of the 10 best UK times (Top10) for 10 km, half-marathon and marathon races were calculated, with all included athletes having personal best (PB) performances within 20% of Top10 (this study's definition of "elite"). Genotype and allele frequencies were compared between athletes and non-athletes, and athlete PB compared between genotypes. There were no differences in genotype frequency between athletes and non-athletes, but athlete Ser allele carriers were 2.5% faster than Gly/Gly homozygotes (p = 0.030). This study demonstrates that performance differences between elite long-distance runners are associated with rs8192678 genotype, with the Ser allele appearing to enhance performance.


Asunto(s)
Resistencia Física , Carrera , Masculino , Humanos , Femenino , Resistencia Física/genética , Polimorfismo Genético , Frecuencia de los Genes , Genotipo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
5.
J Strength Cond Res ; 37(4): 799-805, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36763468

RESUMEN

ABSTRACT: Dines, HR, Nixon, J, Lockey, SJ, Herbert, AJ, Kipps, C, Pedlar, CR, Day, SH, Heffernan, SM, Antrobus, MR, Brazier, J, Erskine, RM, Stebbings, GK, Hall, ECR, and Williams, AG. Collagen gene polymorphisms previously associated with resistance to soft-tissue injury are more common in competitive runners than nonathletes. J Strength Cond Res 37(4): 799-805, 2023-Single-nucleotide polymorphisms (SNPs) of collagen genes have been associated with soft-tissue injury and running performance. However, their combined contribution to running performance is unknown. We investigated the association of 2 collagen gene SNPs with athlete status and performance in 1,429 Caucasian subjects, including 597 competitive runners (354 men and 243 women) and 832 nonathletes (490 men and 342 women). Genotyping for COL1A1 rs1800012 (C > A) and COL5A1 rs12722 (C > T) SNPs was performed by a real-time polymerase chain reaction. The numbers of "injury-resistant" alleles from each SNP, based on previous literature (rs1800012 A allele and rs12722 C allele), were combined as an injury-resistance score (RScore, 0-4; higher scores indicate injury resistance). Genotype frequencies, individually and combined as an RScore, were compared between cohorts and investigated for associations with performance using official race times. Runners had 1.34 times greater odds of being rs12722 CC homozygotes than nonathletes (19.7% vs. 15.5%, p = 0.020) with no difference in the rs1800012 genotype distribution ( p = 0.659). Fewer runners had an RScore 0 of (18.5% vs. 24.7%) and more had an RScore of 4 (0.6% vs. 0.3%) than nonathletes ( p < 0.001). Competitive performance was not associated with the COL1A1 genotype ( p = 0.933), COL5A1 genotype ( p = 0.613), or RScore ( p = 0.477). Although not associated directly with running performance among competitive runners, a higher combined frequency of injury-resistant COL1A1 rs1800012 A and COL5A1 rs12722 C alleles in competitive runners than nonathletes suggests these SNPs may be advantageous through a mechanism that supports, but does not directly enhance, running performance.


Asunto(s)
Carrera , Traumatismos de los Tejidos Blandos , Masculino , Humanos , Femenino , Colágeno Tipo V/genética , Genotipo , Colágeno/genética , Polimorfismo de Nucleótido Simple
6.
Scand J Med Sci Sports ; 32(2): 338-350, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34633711

RESUMEN

It is currently unknown if injury risk is associated with genetic variation in academy soccer players (ASP). We investigated whether nine candidate single nucleotide polymorphisms were associated (individually and in combination) with injury in ASP at different stages of maturation. Saliva samples and one season's injury records were collected from 402 Caucasian male ASP from England, Spain, Uruguay, and Brazil, whose maturity status was defined as pre- or post-peak height velocity (PHV). Pre-PHV COL5A1 rs12722 CC homozygotes had relatively higher prevalence of any musculoskeletal soft tissue (22.4% vs. 3.0%, p = 0.018) and ligament (18.8% vs. 11.8%, p = 0.029) injury than T-allele carriers, while VEGFA rs2010963 CC homozygotes had greater risk of ligament/tendon injury than G-allele carriers. Post-PHV IL6 rs1800795 CC homozygotes had a relatively higher prevalence of any (67.6% vs. 40.6%, p = 0.003) and muscle (38.2% vs. 19.2%, p = 0.013) injuries than G-allele carriers. Relatively more post-PHV EMILIN1 rs2289360 CC homozygotes suffered any injury than CT and TT genotypes (56.4% vs. 40.3% and 32.8%, p = 0.007), while the "protective" EMILIN1 TT genotype was more frequent in post- than pre-PHV ASP (22.3 vs. 10.0%, p = 0.008). Regardless of maturity status, T-alleles of ACTN3 rs1815739 and EMILIN1 rs2289360 were associated with greater absence following ankle injury, while the MMP3 rs679620 T-allele and MYLK rs28497577 GT genotype were associated with greater absence following knee injury. The combination of injury-associated genotypes was greater in injured vs. non-injured ASP. This study is the first to demonstrate that a genetic association exists with injury prevalence in ASP, which differs according to maturity status.


Asunto(s)
Traumatismos de la Rodilla , Fútbol , Actinina/genética , Alelos , Estatura , Humanos , Masculino , Polimorfismo de Nucleótido Simple
7.
J Strength Cond Res ; 36(9): 2509-2514, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278272

RESUMEN

ABSTRACT: Moreland, E, Borisov, OV, Semenova, EA, Larin, AK, Andryushchenko, ON, Andryushchenko, LB, Generozov, EV, Williams, AG, and Ahmetov, II. Polygenic profile of elite strength athletes. J Strength Cond Res 36(9): 2509-2514, 2022-Strength is a heritable trait with unknown polygenic nature. So far, more than 200 DNA polymorphisms associated with strength/power phenotypes have been identified majorly involving nonathletic populations. The aim of the present study was to investigate individually and in combination the association of 217 DNA polymorphisms previously identified as markers for strength/power phenotypes with elite strength athlete status. A case-control study involved 83 Russian professional strength athletes (53 weightlifters, 30 powerlifters), 209 Russian and 503 European controls. Genotyping was conducted using micro-array analysis. Twenty-eight DNA polymorphisms (located near or in ABHD17C , ACTG1 , ADCY3 , ADPGK , ANGPT2 , ARPP21 , BCDIN3D , CRTAC1 , DHODH , GBE1 , IGF1 , IL6 , ITPR1 , KIF1B , LRPPRC , MMS22L , MTHFR , NPIPB6 , PHACTR1 , PLEKHB1 , PPARG , PPARGC1A , R3HDM1 , RASGRF1 , RMC1 , SLC39A8 , TFAP2D , ZKSCAN5 genes) were identified to have an association with strength athlete status. Next, to assess the combined impact of all 28 DNA polymorphisms, all athletes were classified according to the number of "strength" alleles they possessed. All highly elite strength athletes were carriers of at least 22 (up to 34) "strength" alleles, whereas 27.8% of Russian controls had less than 22 "strength" alleles ( p < 0.0001). The proportion of subjects with a high (≥26) number of "strength" alleles was significantly greater in highly elite strength athletes (84.8%) compared with less successful strength athletes (64.9%; odd ratio [OR] = 3.0, p = 0.042), Russian (26.3%; OR = 15.6, p < 0.0001) or European (37.8%; OR = 6.4, p < 0.0001) controls. This is the first study to demonstrate that the likelihood of becoming an elite strength athlete depends on the carriage of a high number of strength-related alleles.


Asunto(s)
Atletas , Polimorfismo Genético , Alelos , Proteínas de Unión al Calcio , Estudios de Casos y Controles , ADN/genética , Genotipo , Humanos , Factor de Transcripción AP-2
8.
Aging Clin Exp Res ; 33(7): 1831-1839, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33715139

RESUMEN

BACKGROUND: Identification of simple screening tools for detecting lower skeletal muscle mass may be beneficial for planning effective interventions in the elderly. AIMS: We aimed to (1) establish a threshold for one-leg standing balance test (OLST) time for low muscle mass, and (2) test the ability of that threshold to assess muscular impairments in a poor balance group. METHODS: Eyes-open OLST (maximum duration 30 s) was performed with right and left legs in 291 women (age 71 ± 6 years). OLST time was calculated as the sum of the OLST time of right and left legs. Fat-free mass (FFM), skeletal muscle mass (SMM), fat mass, biceps brachii and vastus lateralis sizes; handgrip strength (HGS), elbow flexion maximum torque (MVCEF) and knee extension maximum torque (MVCKE) were measured. Muscle quality was calculated as MVCKE/FFM and physical activity was assessed by questionnaire. Low muscle mass was defined as SMMrelative of 22.1%, a previously established threshold for pre-sarcopenia. RESULTS: The OLST threshold time to detect low muscle mass was 55 s (sensitivity: 0.63; specificity: 0.60). The poor balance group (OLST < 55 s) had higher fat mass (3.0%, p < 0.001), larger VL thickness (5.1%, p = 0.016), and lower HGS (- 10.2%, p < 0.001), MVCEF (- 8.2%, p = 0.003), MVCKE (- 9.5%, p = 0.012), MVCKE/FFM (- 11.0%, p = 0.004) and physical activity (- 8.0%, p = 0.024) compared to the normal balance group. While after adjusting age, the differences exist for HGS, fat mass and VL thickness only. DISCUSSION: An OLST threshold of 55 s calculated as the summed score from both legs discriminated pre-sarcopenic characteristics among active, community-dwelling older women with limited potential (sensitivity 0.63, specificity 0.60). CONCLUSION: OLST, which can be performed easily in community settings without the need for more complex muscle mass measurement, may help identify women at risk of developing sarcopenia.


Asunto(s)
Pierna , Sarcopenia , Anciano , Femenino , Fuerza de la Mano , Humanos , Vida Independiente , Fuerza Muscular , Músculo Esquelético
9.
J Strength Cond Res ; 34(6): 1790-1801, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30138238

RESUMEN

Brazier, J, Antrobus, M, Stebbings, GK, Day, SH, Callus, P, Erskine, RM, Bennett, MA, Kilduff, LP, and Williams, AG. Anthropometric and physiological characteristics of elite male rugby athletes. J Strength Cond Res 34(6): 1790-1801, 2020-This is the first article to review the anthropometric and physiological characteristics required for elite rugby performance within both rugby union (RU) and rugby league (RL). Anthropometric characteristics such as height and body mass, and physiological characteristics such as speed and muscular strength, have previously been advocated as key discriminators of playing level within rugby. This review aimed to identify the key anthropometric and physiological properties required for elite performance in rugby, distinguishing between RU and RL, forwards and backs and competitive levels. There are differences between competitive standards such that, at the elite level, athletes are heaviest (RU forwards ∼111 kg, backs ∼93 kg; RL forwards ∼103 kg, backs ∼90 kg) with lowest % body fat (RU forwards ∼15%, backs ∼12%; RL forwards ∼14%, backs ∼11%), they have most fat-free mass and are strongest (back squat: RU forwards ∼176 kg, backs ∼157 kg; RL forwards ∼188 kg, backs ∼168 kg; bench press: RU forwards ∼131 kg, backs ∼118 kg; RL forwards ∼122 kg, backs ∼113 kg) and fastest (10 m: RU forwards ∼1.87 seconds, backs ∼1.77 seconds; 10 m: RL forwards ∼1.9 seconds, backs ∼1.83 seconds). We also have unpublished data that indicate contemporary RU athletes have less body fat and are stronger and faster than the published data suggest. Regardless, well-developed speed, agility, lower-body power, and strength characteristics are vital for elite performance, probably reflect both environmental (training, diet, etc.) and genetic factors, distinguish between competitive levels, and are therefore important determinants of elite status in rugby.


Asunto(s)
Pesos y Medidas Corporales , Fútbol Americano/fisiología , Aptitud Física/fisiología , Atletas , Rendimiento Atlético/fisiología , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología
10.
Eur J Appl Physiol ; 119(1): 29-47, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30377780

RESUMEN

Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk and can also have substantial implications for athlete health and injury risk in the elite sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal characteristics and physical activity. The interrelationships between such factors, and a strong genetic component, suggested to be around 50-85% at various anatomical sites, determine skeletal health throughout life. Genome-wide association studies and case-control designs have revealed many loci associated with variation in BMD. However, a number of the candidate genes identified at these loci have no known associated biological function or have yet to be replicated in subsequent investigations. Furthermore, few investigations have considered gene-environment interactions-in particular, whether specific genes may be sensitive to mechanical loading from physical activity and the outcome of such an interaction for BMD and potential injury risk. Therefore, this review considers the importance of physical activity on BMD, genetic associations with BMD and how subsequent investigation requires consideration of the interaction between these determinants. Future research using well-defined independent cohorts such as elite athletes, who experience much greater mechanical stress than most, to study such phenotypes, can provide a greater understanding of these factors as well as the biological underpinnings of such a physiologically "extreme" population. Subsequently, modification of training, exercise or rehabilitation programmes based on genetic characteristics could have substantial implications in both the sporting and public health domains once the fundamental research has been conducted successfully.


Asunto(s)
Traumatismos en Atletas/genética , Densidad Ósea , Ejercicio Físico , Predisposición Genética a la Enfermedad , Atletas , Traumatismos en Atletas/epidemiología , Humanos
11.
BMC Genomics ; 19(1): 13, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298672

RESUMEN

BACKGROUND: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. AIM: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. METHODS: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. CONCLUSIONS: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running.


Asunto(s)
Actinina/genética , Atletas , Peptidil-Dipeptidasa A/genética , Resistencia Física/genética , Polimorfismo Genético , Carrera/fisiología , Femenino , Genotipo , Humanos , Masculino , Población Blanca/genética
12.
Biol Sport ; 35(1): 13-19, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30237657

RESUMEN

The purpose of the study was to investigate the current use of genetic testing in UK elite sport and assess how genetic testing might be received by those employed in elite sport. Seventy-two elite athletes and 95 support staff at UK sports clubs and governing bodies completed an online survey of 11 questions concerning their experience of genetic testing and beliefs regarding the use of genetic testing in sport. Genetic testing related to sports performance and injury susceptibility is conducted in UK elite sport, albeit by a relatively small proportion of athletes (≤17%) and support staff (≤8%). Athletes and their support staff agree that genetics are important in determining elite status (≥79%) and appear willing to engage in genetic testing for individualising training to improve sport performance and reduce injury risk. Opinion was divided on whether genetic information should be used to identify talented athletes and influence selection, eligibility or employment status. Genetic testing for sports performance and injury susceptibility occurs in UK elite sport, however it is not commonly conducted. There is a belief that genetics is an important factor in determining an athlete and there is a willingness to engage in genetic testing for sports performance and injury susceptibility.

13.
BMC Genomics ; 18(Suppl 8): 820, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29143592

RESUMEN

BACKGROUND: Two common single nucleotide polymorphisms within the COL5A1 gene (SNPs; rs12722 C/T and rs3196378 C/A) have previously been associated with tendon and ligament pathologies. Given the high incidence of tendon and ligament injuries in elite rugby athletes, we hypothesised that both SNPs would be associated with career success. RESULTS: In 1105 participants (RugbyGene project), comprising 460 elite rugby union (RU), 88 elite rugby league athletes and 565 non-athlete controls, DNA was collected and genotyped for the COL5A1 rs12722 and rs3196378 variants using real-time PCR. For rs12722, the injury-protective CC genotype and C allele were more common in all athletes (21% and 47%, respectively) and RU athletes (22% and 48%) than in controls (16% and 41%, P ≤ 0.01). For rs3196378, the CC genotype and C allele were overrepresented in all athletes (23% and 48%) and RU athletes (24% and 49%) compared with controls (16% and 41%, P ≤ 0.02). The CC genotype in particular was overrepresented in the back and centres (24%) compared with controls, with more than twice the odds (OR = 2.25, P = 0.006) of possessing the injury-protective CC genotype. Furthermore, when considering both SNPs simultaneously, the CC-CC SNP-SNP combination and C-C inferred allele combination were higher in all the athlete groups (≥18% and ≥43%) compared with controls (13% and 40%; P = 0.01). However, no genotype differences were identified for either SNP when RU playing positions were compared directly with each other. CONCLUSION: It appears that the C alleles, CC genotypes and resulting combinations of both rs12722 and rs3196378 are beneficial for rugby athletes to achieve elite status and carriage of these variants may impart an inherited resistance against soft tissue injury, despite exposure to the high-risk environment of elite rugby. These data have implications for the management of inter-individual differences in injury risk amongst elite athletes.


Asunto(s)
Atletas , Colágeno Tipo V/genética , Fútbol Americano , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Traumatismos de los Tejidos Blandos/genética , Adulto , Alelos , Haplotipos , Humanos , Masculino
14.
Muscle Nerve ; 56(2): 298-306, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27862024

RESUMEN

INTRODUCTION: Muscle weakness determines functional impairment in spastic cerebral palsy (SCP). Measurement of specific force (SF) allows for strength comparison with unimpaired populations (controls) accounting for neural (activation and coactivation), architectural (fascicle length and pennation angle), and structural differences (moment arm length). METHODS: Medial gastrocnemius (MG) SF (and its determinants) was assessed in both paretic and non-paretic legs of 11 men with SCP and 11 age-matched controls during plantarflexion maximal voluntary isometric contraction (MVIC). RESULTS: SCP fascicles were 28% longer than control fascicles (P < 0.05). Pennation angle of SCP patients was 41% smaller than in controls. The physiological cross-sectional area of SCP MG patients was 47% smaller than in controls (P < 0.05). There was no difference in SF between controls and SCP patients. CONCLUSIONS: Weakness in SCP is primarily attributable to deficits in agonist activation and muscle size; consequently, SF measured in the MG is similar between SCP and controls. Muscle Nerve 56: 298-306, 2017.


Asunto(s)
Parálisis Cerebral/complicaciones , Debilidad Muscular/etiología , Debilidad Muscular/patología , Músculo Esquelético/fisiopatología , Tendón Calcáneo/inervación , Tendón Calcáneo/fisiopatología , Adolescente , Adulto , Articulación del Tobillo , Estudios de Casos y Controles , Parálisis Cerebral/patología , Estimulación Eléctrica , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Movimiento/fisiología , Rango del Movimiento Articular , Estadísticas no Paramétricas , Torque , Adulto Joven
15.
Physiol Genomics ; 48(3): 183-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26715623

RESUMEN

Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14-17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium.


Asunto(s)
Rendimiento Atlético , Biomarcadores/metabolismo , Genómica/métodos , Animales , Epigénesis Genética , Europa (Continente) , Humanos , Bancos de Tejidos
16.
Muscle Nerve ; 49(6): 879-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24037782

RESUMEN

INTRODUCTION: Inter-individual variability in measurements of muscle strength and its determinants was identified to: (1) produce a normative data set describing the normal range and (2) determine whether some measurements are more informative than others when evaluating inter-individual differences. METHODS: Functional and morphological characteristics of the vastus lateralis were measured in 73 healthy, untrained adult men. RESULTS: Inter-individual variability (coefficient of variation) was greater for isometric maximal voluntary contraction (MVC) torque (18.9%) compared with fascicle force (14.6%; P=0.025) and physiological cross-sectional area (PCSA; 17.2%) compared with anatomical cross-sectional area (ACSA, 13.0%; P<0.0005). The relationship between ACSA and isometric MVC torque (r(2) =0.56) was weaker than that between PCSA and fascicle force (r(2) =0.68). CONCLUSIONS: These results provide a normative data set on inter-individual variability in a variety of muscle strength-related measurements and illustrate the benefit of using more stringent measures of muscle properties. Muscle Nerve 49: 879-886, 2014.


Asunto(s)
Dinamómetro de Fuerza Muscular , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Humanos , Contracción Isométrica/fisiología , Masculino , Contracción Muscular/fisiología , Valores de Referencia , Adulto Joven
17.
Muscle Nerve ; 49(1): 76-83, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23558961

RESUMEN

INTRODUCTION: Muscle weakness is present in the paretic limbs of individuals with cerebral palsy (CP). We aimed to determine what neuromuscular factors contribute to weakness in adults with CP during isometric maximal voluntary contractions (iMVCs). METHODS: Gastrocnemius anatomical cross-sectional area (ACSA) and agonist and antagonist activation were measured in 11 CP and 11 control adult men during plantarflexion iMVC. RESULTS: Plantarflexion iMVC torque of the paretic leg was 42% and 52% less than in the non-paretic and control limbs, respectively. The paretic gastrocnemius ACSA was smaller than in the control group only. Paretic agonist activation was less than the non-paretic and control groups, whereas antagonist coactivation was higher. Multiple regression analysis revealed muscle activation accounted for 57% of variation in paretic plantarflexion iMVC torque. CONCLUSIONS: In individuals with CP, muscle weakness in the paretic limb is attributed primarily to impaired neural activation and, to a lesser degree, ACSA.


Asunto(s)
Parálisis Cerebral/patología , Parálisis Cerebral/fisiopatología , Contracción Muscular/fisiología , Debilidad Muscular/fisiopatología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Fenómenos Biomecánicos/fisiología , Estudios de Casos y Controles , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Fuerza Muscular/fisiología , Análisis de Regresión , Torque , Adulto Joven
18.
Eur J Appl Physiol ; 114(12): 2625-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25168209

RESUMEN

BACKGROUND/AIM: Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between three polymorphisms of the MMP3 gene, (rs679620, rs591058 and rs650108) and patellar tendon dimensional and mechanical properties in vivo. METHODS: One hundred and sixty, healthy, recreationally-active, Caucasian men and women, aged 18-39 were recruited. MMP3 genotype determined using real-time PCR was used to select 84 participants showing greatest genetic differences to complete phenotype measurements. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. RESULTS: No significant associations were evident between the completely linked MMP3 rs591058 and rs679620 gene variants, and closely linked rs650108 gene variant, and either patellar tendon volume (rs679620, P = 0.845; rs650108, P = 0.984) or elastic modulus (rs679620, P = 0.226; rs650108, P = 0.088). Similarly, there were no associations with the Z-score that combined those dimension and functional properties into a composite value (rs679620, P = 0.654; rs650108, P = 0.390). Similarly, no association was evident when comparing individuals with/without the rarer alleles (P > 0.01 in all cases). CONCLUSIONS: Patellar tendon properties do not seem to be influenced by the MMP3 gene variants measured. Although these MMP3 gene variants have previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties.


Asunto(s)
Módulo de Elasticidad/fisiología , Metaloproteinasa 3 de la Matriz/genética , Ligamento Rotuliano/anatomía & histología , Ligamento Rotuliano/fisiología , Polimorfismo Genético , Adolescente , Adulto , Fenómenos Biomecánicos , Electromiografía , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Contracción Isométrica/fisiología , Masculino , Músculo Esquelético/fisiología , Tamaño de los Órganos/fisiología , Adulto Joven
19.
Eur J Appl Physiol ; 114(7): 1393-402, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643429

RESUMEN

PURPOSE: Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between one such gene variant, gene encoding collagen type V alpha 1 chain (COL5A1) rs12722, and patellar tendon dimensions and mechanical properties in vivo. METHODS: Eighty-four recreationally active, Caucasian, men and women, aged 18-39, with no history of injuries to the knee and a body mass index between 18.5 and 30 were recruited. Women were not recruited if they were pregnant or using any form of hormone-based contraception. The COL5A1 rs12722 genotype was determined using real-time polymerase chain reaction. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. RESULTS: After adjustments for non-genetic factors, no significant associations were evident between the COL5A1 rs12722 gene variant and either patellar tendon volume (P = 0.933) or elastic modulus (P = 0.206), nor with a calculated Z score that combined these dimensional and functional properties into a composite value (P = 0.647). Similarly, no association was evident when comparing individuals with/without the rare C allele (volume, P = 0.883; elastic modulus, P = 0.129; Z score, P = 0.631). CONCLUSIONS: Tendon properties do not seem to be influenced by the COL5A1 rs12722 gene variant. Although the COL5A1 rs12722 polymorphism has previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties.


Asunto(s)
Colágeno Tipo V/genética , Ligamento Rotuliano/fisiología , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Fenómenos Biomecánicos , Módulo de Elasticidad , Electromiografía , Femenino , Genotipo , Humanos , Masculino , Dinamómetro de Fuerza Muscular , Músculo Esquelético/fisiología , Ligamento Rotuliano/diagnóstico por imagen , Fenotipo , Ultrasonografía , Adulto Joven
20.
J Strength Cond Res ; 27(8): 2055-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23222085

RESUMEN

Hypoxia-inducible factor-1α (encoded by HIF1A gene) controls a number of genes that are implicated in various cellular functions including glycolysis and cell proliferation and differentiation. The rs11549465 C > T polymorphism in the HIF1A gene, which produces the amino acid substitution Pro582Ser, increases protein stability and transcriptional activity and, therefore, improves glucose metabolism. The aim of our study was to investigate the association between the HIF1A Pro582Ser polymorphism and elite strength athlete status. A total of 208 Russian strength athletes (122 weightlifters and 86 wrestlers) of regional or national competitive standard and 1,413 controls were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method. We found that the frequency of the HIF1A 582Ser variant was significantly higher in weightlifters (13.1%, p = 0.0031) and wrestlers (15.7%, p = 0.0002) compared with the controls (7.5%). Additionally, the highest (21.1%, p = 0.0052) frequency of the 582Ser variant was found in a group of elite strength athletes. Thus, our study provides evidence for an association between the HIF1A gene Pro582Ser polymorphism and elite strength athlete status. Although more replication studies are needed, the preliminary data suggest an opportunity to use the analysis of HIF1A polymorphism along with other gene variations and standard phenotypic assessment in sports selection.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Fuerza Muscular/genética , Levantamiento de Peso/fisiología , Lucha/fisiología , Adulto , Rendimiento Atlético/fisiología , Estudios de Casos y Controles , Femenino , Genotipo , Glucólisis/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Federación de Rusia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA