Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645174

RESUMEN

Fetal growth restriction (FGR) caused by placental insufficiency is a major contributor to neonatal morbidity and mortality. There is currently no in utero treatment for placental insufficiency or FGR. The placenta serves as the vital communication, supply, exchange, and defense organ for the developing fetus and offers an excellent opportunity for therapeutic interventions. Here we show efficacy of repeated treatments of trophoblast-specific human insulin-like 1 growth factor ( IGF1 ) gene therapy delivered in a non-viral, polymer nanoparticle to the placenta for the treatment of FGR. Using the guinea pig maternal nutrient restriction model of FGR, nanoparticle-mediated IGF1 treatment was delivered to the placenta via ultrasound guidance across the second half of pregnancy, after establishment of FGR. This treatment resulted in correction of fetal weight in MNR animals compared to control, improved fetal physiology and no negative maternal side-effects. Overall, we show for the first time a therapy capable of improving the entire pregnancy environment: maternal, placental, and fetal. This combined with our previous studies using this therapy at both mid pregnancy and in numerous cell and animal models demonstrate the plausibility of this therapy for future human translation to improve health outcomes of neonates and decrease numerous morbidities associated with the developmental origins of disease.

2.
J Nutr ; 140(10): 1781-7, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20739449

RESUMEN

Bone is progressively lost with advancing age. Therapies are limited and the only effective proanabolic regimen presently available to restore bone is intermittent treatment with teriparatide (parathyroid hormone 1-34). Recent evidence suggests that dietary supplementation with dried plum (DP) can prevent bone loss due to estrogen deficiency. To determine whether dietary DP supplementation can prevent the loss of bone with aging and whether bone that has already been lost can be restored, adult (6 mo) and old (18 mo) male mice were fed a normal diet or isoenergetic, isonitrogenous diets supplemented with DP (0, 15, and 25% DP by weight) for 6 mo. MicroCT analysis and bone histomorphometry were used to assess bone volume, structure, and metabolic activity before, during, and after dietary supplementation. Mice fed the 0% DP diet (control diet) lost bone, whereas both adult and old mice fed the 25% DP-supplemented diet gained bone. Adult but not old mice fed the 15% diet also gained bone. Cancellous bone volume in mice receiving 25% DP exceeded baseline levels by 40-50%. Trabecular structure varied with diet and age and responses in old mice were generally blunted. Trabecular, but not cortical, mineral density varied with age and measures of bone anabolic activity were lower in aged mice. Our findings suggest that DP contains proanabolic factors that can dramatically increase bone volume and restore bone that has already been lost due to aging. In turn, DP may provide effective prophylactic and therapeutic agents for the treatment of osteoporosis.


Asunto(s)
Envejecimiento , Dieta , Alimentos en Conserva , Frutas , Osteoporosis/prevención & control , Prunus , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Densidad Ósea , Huesos/metabolismo , Huesos/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Fitoterapia
3.
J Bone Miner Res ; 30(4): 681-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25359699

RESUMEN

Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte-derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl-Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl-Ab to that of testosterone-enanthate (TE), an agent that we have previously shown prevents SCI-induced bone loss. Fifty-five (n = 11-19/group) skeletally mature male Sprague-Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl-Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty-one days post-injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via µCT and histomorphometry) and distal femur (via µCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl-Ab and TE both prevented SCI-induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl-Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl-Ab and SCI + TE animals, whereas only Scl-Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI-induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl-Ab prevents osteoporosis in the SCI population.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Osteoporosis/prevención & control , Traumatismos de la Médula Espinal/complicaciones , Animales , Biomarcadores/sangre , Marcadores Genéticos , Masculino , Osteoporosis/diagnóstico por imagen , Osteoporosis/etiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/fisiopatología , Testosterona/sangre , Microtomografía por Rayos X
4.
J Bone Miner Res ; 29(11): 2405-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24764121

RESUMEN

The influence of the aromatase enzyme in androgen-induced bone maintenance after skeletal maturity remains somewhat unclear. Our purpose was to determine whether aromatase activity is essential to androgen-induced bone maintenance. Ten-month-old male Fisher 344 rats (n = 73) were randomly assigned to receive Sham surgery, orchiectomy (ORX), ORX + anastrozole (AN; aromatase inhibitor), ORX + testosterone-enanthate (TE, 7.0 mg/wk), ORX + TE + AN, ORX + trenbolone-enanthate (TREN; nonaromatizable, nonestrogenic testosterone analogue; 1.0 mg/wk), or ORX + TREN + AN. ORX animals exhibited histomorphometric indices of high-turnover osteopenia and reduced cancellous bone volume compared with Shams. Both TE and TREN administration suppressed cancellous bone turnover similarly and fully prevented ORX-induced cancellous bone loss. TE- and TREN-treated animals also exhibited greater femoral neck shear strength than ORX animals. AN co-administration slightly inhibited the suppression of bone resorption in TE-treated animals but did not alter TE-induced suppression of bone formation or the osteogenic effects of this androgen. In TREN-treated animals, AN co-administration produced no discernible effects on cancellous bone turnover or bone volume. ORX animals also exhibited reduced levator ani/bulbocavernosus (LABC) muscle mass and elevated visceral adiposity. In contrast, TE and TREN produced potent myotrophic effects in the LABC muscle and maintained fat mass at the level of Shams. AN co-administration did not alter androgen-induced effects on muscle or fat. In conclusion, androgens are able to induce direct effects on musculoskeletal and adipose tissue, independent of aromatase activity.


Asunto(s)
Andrógenos/farmacología , Inhibidores de la Aromatasa/farmacología , Aromatasa , Nitrilos/farmacología , Testosterona/farmacología , Triazoles/farmacología , Anabolizantes/farmacología , Anastrozol , Animales , Heptanoatos/farmacología , Masculino , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Orquiectomía , Osteoporosis/tratamiento farmacológico , Osteoporosis/enzimología , Osteoporosis/patología , Ratas , Ratas Endogámicas F344 , Acetato de Trembolona/farmacología
5.
J Neurotrauma ; 31(9): 834-45, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24378197

RESUMEN

Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77-85% reduction in hindlimb cancellous bone volume at the distal femur (measured via µCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13-27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI.


Asunto(s)
Andrógenos/administración & dosificación , Huesos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Traumatismos de la Médula Espinal/complicaciones , Testosterona/administración & dosificación , Animales , Atrofia/prevención & control , Densidad Ósea/efectos de los fármacos , Huesos/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Músculo Esquelético/patología , Próstata/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
6.
Menopause ; 19(11): 1267-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22713863

RESUMEN

OBJECTIVE: Both estrogen and mechanical loading regulate bone maintenance. However, mechanical overload seems less effective in enhancing bone mineral density (BMD) in estrogen-deficient women. The aim of this study was to determine whether estradiol (E2) influences early-phase bone adaptations to reambulation (REAMB) and/or rehabilitation exercises after hindlimb unloading (HLU) of ovariectomized rats. METHODS: Eighty-one 5-month-old female Sprague-Dawley rats were randomized into the following groups: (1) intact controls, (2) ovariectomy (OVX), (3) OVX + E2, (4) OVX + 4 weeks of HLU, (5) OVX + E2 + HLU, (6) OVX + HLU + 2 weeks of quadrupedal REAMB, (7) OVX + E2 + HLU + REAMB, (8) OVX + HLU + REAMB + supplemental climbing, jumping, and balance exercises (EX), or (9) OVX + E2 + HLU + REAMB + EX. Serial dual-energy x-ray absorptiometry scans were performed to track total body bone characteristics throughout the study, and peripheral quantitative computerized tomography was used to determine distal femoral metaphyseal bone mineral characteristics. RESULTS: Total body BMD increased by 4% to 8% in all animals receiving supplemental E2, whereas BMD did not change in animals without E2. OVX reduced trabecular BMD at the femoral metaphysis, and HLU exacerbated this loss while also reducing cortical BMD. E2 protected against OVX + HLU-induced bone loss at the femoral metaphysis. Conversely, REAMB did not alter BMD, regardless of estrogen status. In the absence of E2, REAMB + EX resulted in severe bone loss after OVX + HLU, with trabecular BMD and cortical BMD measurements that were 91% and 7% below those of controls, respectively (P ≤ 0.001). However, in the presence of E2, REAMB + EX did not negatively influence bone mineral characteristics. CONCLUSIONS: E2 protects against bone loss resulting from combined OVX + HLU of rodents. In the absence of estrogen, exercise induces disadvantageous early-phase bone adaptations after extended disuse.


Asunto(s)
Densidad Ósea , Estradiol/administración & dosificación , Estrógenos/deficiencia , Suspensión Trasera , Ovariectomía , Absorciometría de Fotón , Animales , Terapia por Ejercicio , Femenino , Minerales , Osteoporosis/etiología , Osteoporosis/rehabilitación , Osteoporosis/terapia , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA