Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 184(18): 4713-4733.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34352228

RESUMEN

SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Inmunidad , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Efecto Espectador , COVID-19/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/patología , Nasofaringe/virología , ARN Viral/análisis , ARN Viral/genética , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Transcripción Genética , Carga Viral
2.
J Chem Phys ; 157(9): 094705, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075711

RESUMEN

We report the results of constant-potential molecular dynamics simulations of the double layer interface between molten 2LiF-BeF2 (FLiBe) and 23LiF-6NaF-21KF (FLiNaK) fluoride mixtures and idealized solid electrodes. Employing methods similar to those used in studies of chloride double layers, we compute the structure and differential capacitance of molten fluoride electric double layers as a function of applied voltage. The role of molten salt structure is probed through comparisons between FLiBe and FLiNaK, which serve as models for strong and weak associate-forming salts, respectively. In FLiBe, screening involves changes in Be-F-Be angles and alignment of the oligomers parallel to the electrode, while in FLiNaK, the electric field is screened mainly by rearrangement of individual ions, predominantly the polarizable potassium cation.

3.
Am J Gastroenterol ; 116(8): 1638-1645, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34047305

RESUMEN

INTRODUCTION: Proton pump inhibitor (PPI) use was recently reported to be associated with increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and worse clinical outcomes. The underlying mechanism(s) for this association are unclear. METHODS: We performed a prospective study of hospitalized coronavirus disease 2019 (COVID-19) patients and COVID-negative controls to understand how PPI use may affect angiotensin-converting enzyme 2 (ACE2) expression and stool SARS-CoV-2 RNA. Analysis of a retrospective cohort of hospitalized patients with COVID-19 from March 15, 2020 to August 15, 2020 in 6 hospitals was performed to evaluate the association of PPI use and mortality. Covariates with clinical relevance to COVID-19 outcomes were included to determine predictors of in-hospital mortality. RESULTS: Control PPI users had higher salivary ACE2 mRNA levels than nonusers, 2.39 ± 1.15 vs 1.22 ± 0.92 (P = 0.02), respectively. Salivary ACE2 levels and stool SARS-CoV-2 RNA detection rates were comparable between users and nonusers of PPI. In 694 hospitalized patients with COVID-19 (age = 58 years, 46% men, and 65% black), mortality rate in PPI users and nonusers was 30% (68/227) vs 12.1% (53/439), respectively. Predictors of mortality by logistic regression were PPI use (adjusted odds ratio [aOR] = 2.72, P < 0.001), age (aOR = 1.66 per decade, P < 0.001), race (aOR = 3.03, P = 0.002), cancer (aOR = 2.22, P = 0.008), and diabetes (aOR = 1.95, P = 0.003). The PPI-associated mortality risk was higher in black patients (aOR = 4.16, 95% confidence interval: 2.28-7.59) than others (aOR = 1.62, 95% confidence interval: 0.82-3.19, P = 0.04 for interaction). DISCUSSION: COVID-negative PPI users had higher salivary ACE2 expression. PPI use was associated with increased mortality risk in patients with COVID-19, particularly African Americans.


Asunto(s)
Enzima Convertidora de Angiotensina 2/sangre , COVID-19/sangre , COVID-19/mortalidad , Inhibidores de la Bomba de Protones/efectos adversos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Medición de Riesgo
4.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687064

RESUMEN

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Asunto(s)
COVID-19 , Coinfección , Células Epiteliales , Interferón Tipo I , Interleucina-17 , SARS-CoV-2 , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , COVID-19/inmunología , Coinfección/inmunología , Coinfección/microbiología , Coinfección/virología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Masculino , SARS-CoV-2/inmunología , Persona de Mediana Edad , Femenino , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Adulto , Mucosa Nasal/inmunología , Mucosa Nasal/microbiología , Anciano , Nasofaringe/microbiología , Candidiasis/inmunología , Candidiasis/microbiología , Micosis/inmunología
5.
medRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745424

RESUMEN

Background: Many questions remain unanswered regarding the implication of lipid metabolites in severe SARS-CoV-2 infections. By re-analyzed sequencing data from the nasopharynx of a previously published cohort, we found that alox genes, involved in eicosanoid synthesis, were up-regulated in high WHO score patients, especially in goblet cells. Herein, we aimed to further understand the roles played by eicosanoids during severe SARS-CoV-2 infection. Methods and findings: We performed a total fatty acid panel on plasma and bulk RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites revealed that lipid metabolites were increased in SARS-CoV-2 patients including the lipid mediators Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA). AA, EPA and the fatty acids Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA), were positively correlated to WHO disease severity score. Transcriptomic analysis demonstrated that COVID-19 patients can be segregated based on WHO scores. Ontology, KEGG and Reactome analysis identified pathways enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling and, cell cycling pathways. Conclusions: Our study offers an association between nasopharynx mucosa eicosanoid genes expression, specific serum inflammatory lipids and, subsequent DNA damage pathways activation in PBMCs to severity of COVID-19 infection.

6.
Front Mol Neurosci ; 15: 883358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514431

RESUMEN

Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.

7.
MethodsX ; 9: 101626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251944

RESUMEN

Molten salts such as 2LiF-BeF2 (FLiBe) have been proposed as coolants for advanced nuclear fission and fusion reactors. Critical to the design, licensing and operation of these reactors is characterization and understanding of the chemical behavior and mass transport of activation and fission products, corrosion products, and other solutes in the coolant. Electrochemical techniques are a powerful suite of tools for probing these phenomena. The design of an experimental cell for molten salt electrochemistry is described herein. As a demonstration of this design, details of the experimental methods used to conduct electrochemical experiments with molten FLiBe with addition of LiH are provided. Decommissioning of the cell is considered from the point of view of decontamination and waste generated. Main features of the cell include:•Suitable for operation up to 800 °C; suitable for operation inside and outside of a glovebox.•Enables sweep gas, gas sampling and analysis; enables addition of solid and liquid materials during operation.•Supports a variety of electrode materials and arrangements.

8.
medRxiv ; 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36324802

RESUMEN

Recent case reports and epidemiological data suggest fungal infections represent an under-appreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing (scRNA-seq) dataset characterizing the upper respiratory microenvironment during COVID-19, and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals, including confirmatory diagnostic testing demonstrating elevated serum (1, 3)-ß-D-glucan and/or confirmed fungal culture of the predicted pathogen. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL-17 stimulation and anti-fungal immunity. Further, we observe significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggests that IL-17 stimulation - in part driven by Candida colonization - and blunted type I/III interferon signaling represents a common feature of severe COVID-19 infection.

9.
Gut Microbes ; 13(1): 1-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34100340

RESUMEN

To investigate the relationship between intestinal microbiota and SARS-CoV-2-mediated pathogenicity in a United States, majority African American cohort. We prospectively collected fecal samples from 50 SARS-CoV-2 infected patients, 9 SARS-CoV-2 recovered patients, and 34 uninfected subjects seen by the hospital with unrelated respiratory medical conditions (controls). 16S rRNA sequencing and qPCR analysis was performed on fecal DNA/RNA. The fecal microbial composition was found to be significantly different between SARS-CoV-2 patients and controls (PERMANOVA FDR-P = .004), independent of antibiotic exposure. Peptoniphilus, Corynebacterium and Campylobacter were identified as the three most significantly enriched genera in COVID-19 patients compared to controls. Actively infected patients were also found to have a different gut microbiota than recovered patients (PERMANOVA FDR-P = .003), and the most enriched genus in infected patients was Campylobacter, with Agathobacter and Faecalibacterium being enriched in the recovered patients. No difference in microbial community structure between recovered patients and uninfected controls was observed, nor a difference in alpha diversity between the three groups. 24 of the 50 COVID-19 patients (48%) tested positive via RT-qPCR for fecal SARS-CoV-2 RNA. A significant difference in gut microbial composition between SARS-CoV-2 positive and negative samples was observed, with Klebsiella and Agathobacter being enriched in the positive cohort. No significant associations between microbiome composition and disease severity was found. The intestinal microbiota is sensitive to the presence of SARS-CoV-2, with increased relative abundance of genera (Campylobacter, Klebsiella) associated with gastrointestinal (GI) disease. Further studies are needed to investigate the functional impact of SARS-CoV-2 on GI health.


Asunto(s)
COVID-19/microbiología , Microbioma Gastrointestinal , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Estudios de Cohortes , Heces/microbiología , Heces/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiología
10.
bioRxiv ; 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33619488

RESUMEN

Infection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe lower respiratory illness including pneumonia and acute respiratory distress syndrome, which can result in profound morbidity and mortality. However, many infected individuals are either asymptomatic or have isolated upper respiratory symptoms, which suggests that the upper airways represent the initial site of viral infection, and that some individuals are able to largely constrain viral pathology to the nasal and oropharyngeal tissues. Which cell types in the human nasopharynx are the primary targets of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory epithelium remains incompletely understood. Here, we present nasopharyngeal samples from a cohort of 35 individuals with COVID-19, representing a wide spectrum of disease states from ambulatory to critically ill, as well as 23 healthy and intubated patients without COVID-19. Using standard nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing (scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection with SARS-CoV-2, the upper respiratory epithelium undergoes massive reorganization: secretory cells diversify and expand, and mature epithelial cells are preferentially lost. Further, we observe evidence for deuterosomal cell and immature ciliated cell expansion, potentially representing active repopulation of lost ciliated cells through coupled secretory cell differentiation. Epithelial cells from participants with mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I interferon responses. In contrast, cells from participants with severe lower respiratory symptoms appear globally muted in their anti-viral capacity, despite substantially higher local inflammatory myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, local epithelial immunity in curbing and constraining viral-induced pathology. Using a custom computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare cells with RNA intermediates strongly suggestive of active replication. Both within and across individuals, we find remarkable diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, including developing/immature and interferon-responsive ciliated cells, KRT13+ "hillock"-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-CoV-2 RNA+ cells, as compared to uninfected bystanders, are enriched for genes involved in susceptibility (e.g., CTSL, TMPRSS2) or response (e.g., MX1, IFITM3, EIF2AK2) to infection. Together, this work defines both protective and detrimental host responses to SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-19.

11.
ACS Chem Biol ; 15(11): 2854-2859, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33044808

RESUMEN

In this study, we targeted the N-terminal domain (NTD) of transactive response (TAR) DNA binding protein (TDP-43), which is implicated in several neurodegenerative diseases. In silico docking of 50K compounds to the NTD domain of TDP-43 identified a small molecule (nTRD22) that is bound to the N-terminal domain. Interestingly, nTRD22 caused allosteric modulation of the RNA binding domain (RRM) of TDP-43, resulting in decreased binding to RNA in vitro. Moreover, incubation of primary motor neurons with nTRD22 induced a reduction of TDP-43 protein levels, similar to TDP-43 RNA binding-deficient mutants and supporting a disruption of TDP-43 binding to RNA. Finally, nTRD22 mitigated motor impairment in a Drosophila model of amyotrophic lateral sclerosis. Our findings provide an exciting way of allosteric modulation of the RNA-binding region of TDP-43 through the N-terminal domain.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dominios Proteicos/efectos de los fármacos , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Sitios de Unión/efectos de los fármacos , Proteínas de Unión al ADN/química , Modelos Animales de Enfermedad , Drosophila , Humanos , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química
12.
Sci Rep ; 8(1): 12993, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190595

RESUMEN

Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA