Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Surg Res ; 251: 311-320, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32200322

RESUMEN

BACKGROUND: Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments. MATERIALS AND METHODS: Sciatic nerve transection and repair was performed in Lewis rats using one of the following techniques: interrupted epineural, running epineural, grouped fascicular, epineural with absorbable type I collagen wrap, and high tension for incorporation of a negative control. A sham surgery group was also included as a positive control group. Outcomes were compared using assessments of functional recovery (behavior and electrophysiology) and nerve regrowth (imaging and histomorphometry). Three-dimensional printed custom electrode stabilization and imaging devices were designed and fabricated to provide standardization in assessment between subjects. RESULTS: Nerve repair was performed in 48 male Lewis rats. In all animals, functional testing was performed at week 13. The sham group (n = 7) performed the best on both behavioral assays (P < 0.001) and electrophysiology assessments (P < 0.001). The negative control group (high tension) performed poorest on multiple assessments, and there were no significant differences observed for any of the four repair types. Positive correlations were observed between behavioral and histomorphometric tests. CONCLUSIONS: There was no difference in outcome between the four types of nerve repair. High-tension nerve repair represents an ideal negative control. Not all assessment methods correlate equally, and consistent use of complimentary outcome assessments could allow for improved comparison between studies.


Asunto(s)
Regeneración Nerviosa , Procedimientos Neuroquirúrgicos/métodos , Nervio Ciático/lesiones , Animales , Masculino , Procedimientos Neuroquirúrgicos/rehabilitación , Ratas Endogámicas Lew , Prueba de Desempeño de Rotación con Aceleración Constante , Nervio Ciático/fisiología
2.
J Neurosci ; 33(1): 273-85, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23283340

RESUMEN

Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients. Ca(2+) influx through MS TRPC1 activates the protease calpain, which cleaves the integrin adaptor protein talin to reduce Src-dependent axon outgrowth, likely through altered adhesion turnover. We found that talin accumulates at the tips of dynamic filopodia, which is lost upon cleavage of talin by active calpain. This pathway may also be important in axon guidance decisions since asymmetric inhibition of MS TRPC1 is sufficient to induce growth cone turning. Together our results suggest that Ca(2+) influx through MS TRPC1 on filopodia activates calpain to control growth cone turning during development.


Asunto(s)
Axones/metabolismo , Calpaína/metabolismo , Conos de Crecimiento/metabolismo , Canales Catiónicos TRPC/metabolismo , Talina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Femenino , Masculino , Neuronas/citología , Neuronas/metabolismo , Proteolisis , Seudópodos/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Canales Catiónicos TRPC/genética , Xenopus , Proteínas de Xenopus/genética
3.
Doc Ophthalmol ; 129(3): 151-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25266461

RESUMEN

PURPOSE: It has been known for several decades that the magnitude of the corneal electroretinogram (ERG) varies with position on the eye surface, especially in the presence of focal or asymmetric stimuli or retinal lesions. However, this phenomenon has not been well-characterized using simultaneous measurements at multiple locations on the cornea. This work provides the first characterization of spatial differences in the ERG across the rat cornea. METHODS: A contact lens electrode array was employed to record ERG potentials at 25 corneal locations simultaneously following brief full-field flash stimuli in normally sighted Long-Evans rats. These multi-electrode electroretinogram (meERG) responses were analyzed for spatial differences in a-wave and b-wave amplitudes and implicit times. RESULTS: Spatially distinct ERG potentials could be recorded reliably. Comparing relative amplitudes across the corneal locations suggested a slight non-uniform distribution when using full-field, near-saturating stimuli. Amplitudes of a- and b-waves were approximately 3 % lower in the inferior quadrant than in the superior quadrant of the cornea. CONCLUSIONS: The present results comprise the start of the first normative meERG database for rat eyes and provide a basis for comparison of results from eyes with functional deficit. Robust measures of spatial differences in corneal potentials will also support optimization and validation of computational source models of the ERG. To fully utilize the information contained in the meERG data, a detailed understanding of the roles of the many determinants of local corneal potentials will eventually be required.


Asunto(s)
Córnea/fisiología , Electrodos , Electrorretinografía/métodos , Potenciales de la Membrana/fisiología , Animales , Lentes de Contacto , Masculino , Estimulación Luminosa , Ratas , Ratas Long-Evans
4.
Curr Opin Solid State Mater Sci ; 18(6): 301-307, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26392802

RESUMEN

Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.

5.
J Neural Eng ; 20(1)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36649655

RESUMEN

Electrical stimulation of the cervical vagus nerve using implanted electrodes (VNS) is FDA-approved for the treatment of drug-resistant epilepsy, treatment-resistant depression, and most recently, chronic ischemic stroke rehabilitation. However, VNS is critically limited by the unwanted stimulation of nearby neck muscles-a result of non-specific stimulation activating motor nerve fibers within the vagus. Prior studies suggested that precise placement of small epineural electrodes can modify VNS therapeutic effects, such as cardiac responses. However, it remains unclear if placement can alter the balance between intended effect and limiting side effect. We used an FDA investigational device exemption approved six-contact epineural cuff to deliver VNS in pigs and quantified how epineural electrode location impacts on- and off-target VNS activation. Detailed post-mortem histology was conducted to understand how the underlying neuroanatomy impacts observed functional responses. Here we report the discovery and characterization of clear neuroanatomy-dependent differences in threshold and saturation for responses related to both effect (change in heart rate) and side effect (neck muscle contractions). The histological and electrophysiological data were used to develop and validate subject-specific computation models of VNS, creating a well-grounded quantitative framework to optimize electrode location-specific activation of nerve fibers governing intended effect versus unwanted side effect.


Asunto(s)
Estimulación del Nervio Vago , Animales , Porcinos , Nervio Vago/fisiología , Corazón/fisiología , Frecuencia Cardíaca/fisiología , Electrodos Implantados
6.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118841

RESUMEN

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

7.
Ergonomics ; 55(5): 526-37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22506483

RESUMEN

It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. PRACTITIONER SUMMARY: Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.


Asunto(s)
Encéfalo/fisiología , Equipos de Comunicación para Personas con Discapacidad , Educación , Interfaz Usuario-Computador , Carga de Trabajo/psicología , Adulto , Anciano , Niño , Electroencefalografía , Femenino , Humanos , Masculino , Fatiga Mental , Persona de Mediana Edad , Enfermedades Neuromusculares , Adulto Joven
8.
Front Hum Neurosci ; 16: 725715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874158

RESUMEN

An increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies. BCI-FES interventions aim to recover sensorimotor function of an impaired extremity by facilitating and/or inducing long-term motor learning-related neuroplastic changes in appropriate control circuitry. We developed a non-invasive, electroencephalogram (EEG)-based BCI-FES system that delivers closed-loop neural activity-triggered electrical stimulation of targeted distal muscles while providing the user with multimodal sensory feedback. This BCI-FES system consists of three components: (1) EEG acquisition and signal processing to extract real-time volitional and task-dependent neural command signals from cerebral cortical motor areas, (2) FES of muscles of the impaired hand contingent on the motor cortical neural command signals, and (3) multimodal sensory feedback associated with performance of the behavioral task, including visual information, linked activation of somatosensory afferents through intact sensorimotor circuits, and electro-tactile stimulation of the tongue. In this report, we describe device parameters and intervention protocols of our BCI-FES system which, combined with standard physical rehabilitation approaches, has proven efficacious in treating UE motor impairment in stroke survivors, regardless of level of impairment and chronicity.

9.
Stem Cells ; 28(11): 2008-16, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20827747

RESUMEN

Current methods to examine and regulate the functional integration and plasticity of human ESC (hESC)-derived neurons are cumbersome and technically challenging. Here, we engineered hESCs and their derivatives to express the light-gated channelrhodopsin-2 (ChR2) protein to overcome these deficiencies. Optogenetic targeting of hESC-derived neurons with ChR2 linked to the mCherry fluorophore allowed reliable cell tracking as well as light-induced spiking at physiological frequencies. Optically induced excitatory and inhibitory postsynaptic currents could be elicited in either ChR2(+) or ChR2(-) neurons in vitro and in acute brain slices taken from transplanted severe combined immunodeficient (SCID) mice. Furthermore, we created a clonal hESC line that expresses ChR2-mCherry under the control of the synapsin-1 promoter. On neuronal differentiation, ChR2-mCherry expression was restricted to neurons and was stably expressed for at least 6 months, providing more predictable light-induced currents than transient infections. This pluripotent cell line will allow both in vitro and in vivo analysis of functional development as well as the integration capacity of neuronal populations for cell-replacement strategies.


Asunto(s)
Células Madre Embrionarias/citología , Neuronas/citología , Animales , Células Cultivadas , Electrofisiología , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Ratones SCID , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Rodopsina/metabolismo , Sinapsinas/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Langmuir ; 27(1): 233-9, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21121598

RESUMEN

Understanding network development in the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. The mechanisms of axonal navigation to target regions and the specific interactions with guidance factors such as membrane-bound proteins, chemical gradients, mechanical guidance cues, etc., are largely unknown. A current limitation for the study of neural network formation is the ability to control precisely the connectivity of small groups of neurons. A first step in designing such networks is to understand the "rules" central nervous system (CNS) neurons use to form functional connections with one another. Here we begin to delineate novel rules for growth and connectivity of small numbers of neurons patterned on Au substrates in simplified geometries. These studies yield new insights into the mechanisms determining the organizational features present in intact systems. We use a previously reported atomic force microscopy (AFM) nanolithography method to control precisely the location and growth of neurons on these surfaces. By examining a series of systems with different geometrical parameters, we quantitatively and systematically analyze how neuronal growth depends on these parameters.


Asunto(s)
Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Neuronas/citología , Neuronas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Difusión , Ratones , Modelos Biológicos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Polilisina/química , Proteínas/química , Proteínas/metabolismo , Propiedades de Superficie
11.
Microsc Microanal ; 17(4): 540-54, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20684798

RESUMEN

Detection and tracking of stem cell state are difficult due to insufficient means for rapidly screening cell state in a noninvasive manner. This challenge is compounded when stem cells are cultured in aggregates or three-dimensional (3D) constructs because living cells in this form are difficult to analyze without disrupting cellular contacts. Multiphoton laser scanning microscopy is uniquely suited to analyze 3D structures due to the broad tunability of excitation sources, deep sectioning capacity, and minimal phototoxicity but is throughput limited. A novel multiphoton fluorescence excitation flow cytometry (MPFC) instrument could be used to accurately probe cells in the interior of multicell aggregates or tissue constructs in an enhanced-throughput manner and measure corresponding fluorescent properties. By exciting endogenous fluorophores as intrinsic biomarkers or exciting extrinsic reporter molecules, the properties of cells in aggregates can be understood while the viable cellular aggregates are maintained. Here we introduce a first generation MPFC system and show appropriate speed and accuracy of image capture and measured fluorescence intensity, including intrinsic fluorescence intensity. Thus, this novel instrument enables rapid characterization of stem cells and corresponding aggregates in a noninvasive manner and could dramatically transform how stem cells are studied in the laboratory and utilized in the clinic.


Asunto(s)
Agregación Celular , Citometría de Flujo/métodos , Fluorescencia , Células Madre/química , Células Madre/metabolismo , Imagenología Tridimensional , Células Madre/fisiología
12.
Front Neurosci ; 15: 664740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994937

RESUMEN

Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.

13.
Front Neurosci ; 15: 613844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790731

RESUMEN

Sieve electrodes stand poised to deliver the selectivity required for driving advanced prosthetics but are considered inherently invasive and lack the stability required for a chronic solution. This proof of concept experiment investigates the potential for the housing and engagement of a sieve electrode within the medullary canal as part of an osseointegrated neural interface (ONI) for greater selectivity toward improving prosthetic control. The working hypotheses are that (A) the addition of a sieve interface to a cuff electrode housed within the medullary canal of the femur as part of an ONI would be capable of measuring efferent and afferent compound nerve action potentials (CNAPs) through a greater number of channels; (B) that signaling improves over time; and (C) that stimulation at this interface generates measurable cortical somatosensory evoked potentials through a greater number of channels. The modified ONI was tested in a rabbit (n = 1) amputation model over 12 weeks, comparing the sieve component to the cuff, and subsequently compared to historical data. Efferent CNAPs were successfully recorded from the sieve demonstrating physiological improvements in CNAPs between weeks 3 and 5, and somatosensory cortical responses recorded at 12 weeks postoperatively. This demonstrates that sieve electrodes can be housed and function within the medullary canal, demonstrated by improved nerve engagement and distinct cortical sensory feedback. This data presents the conceptual framework for housing more sophisticated sieve electrodes in bone as part of an ONI for improving selectivity with percutaneous connectivity toward improved prosthetic control.

14.
Front Hum Neurosci ; 15: 725645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776902

RESUMEN

Stroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke survivors, regardless of stroke severity and chronicity, and may induce and/or facilitate neuroplastic changes associated with motor rehabilitation. The present sub analyses of ongoing crossover-controlled trial NCT02098265 examine first whether, during movements of the affected hand compared to rest, ipsilesional Mu rhythm desynchronization of cerebral cortical sensorimotor areas [Brodmann's areas (BA) 1-7] is localized and tracks with changes in grip force strength. Secondly, we test the hypothesis that BCI intervention results in changes in frequency-specific directional flow of information transmission (direct path functional connectivity) in BA 1-7 by measuring changes in isolated effective coherence (iCoh) between cerebral cortical sensorimotor areas thought to relate to electrophysiological signatures of motor actions and motor learning. A sample of 16 stroke survivors with right hemisphere lesions (left hand motor impairment), received a maximum of 18-30 h of BCI intervention. Electroencephalograms were recorded during intervention sessions while outcome measures of motor function and capacity were assessed at baseline and completion of intervention. Greater desynchronization of Mu rhythm, during movements of the impaired hand compared to rest, were primarily localized to ipsilesional sensorimotor cortices (BA 1-7). In addition, increased Mu desynchronization in the ipsilesional primary motor cortex, Post vs. Pre BCI intervention, correlated significantly with improvements in hand function as assessed by grip force measurements. Moreover, the results show a significant change in the direction of causal information flow, as measured by iCoh, toward the ipsilesional motor (BA 4) and ipsilesional premotor cortices (BA 6) during BCI intervention. Significant iCoh increases from ipsilesional BA 4 to ipsilesional BA 6 were observed in both Mu [8-12 Hz] and Beta [18-26 Hz] frequency ranges. In summary, the present results are indicative of improvements in motor capacity and behavior, and they are consistent with the view that BCI-FES intervention improves functional motor capacity of the ipsilesional hemisphere and the impaired hand.

15.
Front Neurosci ; 15: 676680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899151

RESUMEN

Background: Placement of the clinical vagus nerve stimulating cuff is a standard surgical procedure based on anatomical landmarks, with limited patient specificity in terms of fascicular organization or vagal anatomy. As such, the therapeutic effects are generally limited by unwanted side effects of neck muscle contractions, demonstrated by previous studies to result from stimulation of (1) motor fibers near the cuff in the superior laryngeal and (2) motor fibers within the cuff projecting to the recurrent laryngeal. Objective: Conventional non-invasive ultrasound, where the transducer is placed on the surface of the skin, has been previously used to visualize the vagus with respect to other landmarks such as the carotid and internal jugular vein. However, it lacks sufficient resolution to provide details about the vagus fascicular organization, or detail about smaller neural structures such as the recurrent and superior laryngeal branch responsible for therapy limiting side effects. Here, we characterize the use of ultrasound with the transducer placed in the surgical pocket to improve resolution without adding significant additional risk to the surgical procedure in the pig model. Methods: Ultrasound images were obtained from a point of known functional organization at the nodose ganglia to the point of placement of stimulating electrodes within the surgical window. Naïve volunteers with minimal training were then asked to use these ultrasound videos to trace afferent groupings of fascicles from the nodose to their location within the surgical window where a stimulating cuff would normally be placed. Volunteers were asked to select a location for epineural electrode placement away from the fascicles containing efferent motor nerves responsible for therapy limiting side effects. 2-D and 3-D reconstructions of the ultrasound were directly compared to post-mortem histology in the same animals. Results: High-resolution ultrasound from the surgical pocket enabled 2-D and 3-D reconstruction of the cervical vagus and surrounding structures that accurately depicted the functional vagotopy of the pig vagus nerve as confirmed via histology. Although resolution was not sufficient to match specific fascicles between ultrasound and histology 1 to 1, it was sufficient to trace fascicle groupings from a point of known functional organization at the nodose ganglia to their locations within the surgical window at stimulating electrode placement. Naïve volunteers were able place an electrode proximal to the sensory afferent grouping of fascicles and away from the motor nerve efferent grouping of fascicles in each subject (n = 3). Conclusion: The surgical pocket itself provides a unique opportunity to obtain higher resolution ultrasound images of neural targets responsible for intended therapeutic effect and limiting off-target effects. We demonstrate the increase in resolution is sufficient to aid patient-specific electrode placement to optimize outcomes. This simple technique could be easily adopted for multiple neuromodulation targets to better understand how patient specific anatomy impacts functional outcomes.

16.
Lab Chip ; 10(1): 23-6, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20024045

RESUMEN

Surface tension driven passive pumping is a microfluidic technology that uses the surface tension present in small droplets to generate flow. To enhance the potential of this type of passive pumping, a new 'micro passive pumping' technique has been developed that allows for high throughput fluidic delivery by combining passive pumping with a small droplet-based fluidic ejection system. Flow rates of up to four milliliters per minute (mL/min) were achieved that are solely limited by the channel geometry and droplet size. Fluid exchange rates can be performed within tens of milliseconds (ms) by delivering fluids from multiple nozzles. The technique can be extended to a multitude of platforms, as channels are not pressurized and therefore do not require bonding to a substrate. This technique provides a novel flow control for high-speed and packeted flow applications without requiring external tubing connections or substrate bonding.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Teóricos , Silicio/química
17.
Lab Chip ; 10(18): 2366-73, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20689862

RESUMEN

Cell migration is a hallmark of cancer cell metastasis and is highly correlated with hypoxia in tumors. The Boyden chamber is a porous membrane-based migration platform that has seen a great deal of use for both in vitro migration and invasion assays due to its adaptability to common culture vessels and relative ease of use. The hypoxic chamber is a current tool that can be implemented to investigate the cellular response to oxygen paradigms. Unfortunately, this method lacks the spatial and temporal precision to accurately model a number of physiological phenomena. In this article, we present a newly developed microfabricated polydimethylsiloxane (PDMS) device that easily adapts to the Boyden chamber, and provides more control over the oxygenation conditions exposed to cells. The device equilibrates to 1% oxygen in about 20 min, thus demonstrating the capabilities of a system for researchers to establish both short-term continuous and intermittent hypoxia regimes. A Parylene-C thin-film coating was used to prevent ambient air penetration through the bulk PDMS and was found to yield improved equilibration times and end-point concentrations. MDA-MD-231 cells, an invasive breast cancer line, were used as a model cell type to demonstrate the effect of oxygen concentration on cell migration through the Boyden chamber porous membrane. Continuous hypoxia downregulated migration of cells relative to the normoxic control, as did an intermittent hypoxia regime (IH) cycling between 0% and 21% oxygen (0-21% IH). However, cells exposed to 5-21% IH exhibited increased migration compared to the other conditions, as well as relative to the normoxic control. The results presented here show the device can be utilized for experiments implementing the Boyden chamber for in vitro hypoxic studies, allowing experiments to be conducted faster and with more precision than currently possible.


Asunto(s)
Movimiento Celular , Membranas Artificiales , Microtecnología/métodos , Oxígeno/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Difusión , Dimetilpolisiloxanos , Humanos , Invasividad Neoplásica , Polímeros/química , Porosidad , Xilenos/química
18.
Neurophotonics ; 7(3): 035003, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32821772

RESUMEN

Significance: A major obstacle to studying resident microglia has been their similarity to infiltrating immune cell types and the lack of unique protein markers for identifying the functional state. Given the role of microglia in all neural diseases and insults, accurate tools for detecting their function beyond morphologic alterations are necessary. Aims: We hypothesized that microglia would have unique metabolic fluxes in reduced nicotinamide adenine dinucleotide (NADH) that would be detectable by relative changes in fluorescence lifetime imaging microscopy (FLIM) parameters, allowing for identification of their activation status. Fluorescence lifetime of NADH has been previously demonstrated to show differences in metabolic fluxes. Approach: Here, we investigate the use of the label-free method of FLIM-based detection of the endogenous metabolic cofactor NADH to identify microglia and characterize their activation status. To test whether microglial activation would also confer a unique NADH lifetime signature, murine primary microglial cultures and adult mice were treated with lipopolysaccharide (LPS). Results: We found that LPS-induced microglia activation correlates with detected changes in NADH lifetime and its free-bound ratio. This indicates that NADH lifetime can be used to monitor microglia activation in a label-free fashion. Moreover, we found that there is an LPS dose-dependent change associated with reactive microglia lifetime fluxes, which is also replicated over time after LPS treatment. Conclusion: We have demonstrated a label-free way of monitoring microglia activation via quantifying lifetime of endogenous metabolic coenzyme NADH. Upon LPS-induced activation, there is a significant change in the fluorescence lifetime following activation. Together, these results indicate that NADH FLIM approaches can be used as a method to characterize microglia activation state, both in vitro and ex vivo.

19.
Front Neurosci ; 14: 931, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013309

RESUMEN

Automated computational analysis techniques utilizing machine learning have been demonstrated to be able to extract more data from different imaging modalities compared to traditional analysis techniques. One new approach is to use machine learning techniques to existing multiphoton imaging modalities to better interpret intrinsically fluorescent cellular signals to characterize different cell types. Fluorescence Lifetime Imaging Microscopy (FLIM) is a high-resolution quantitative imaging tool that can detect metabolic cellular signatures based on the lifetime variations of intrinsically fluorescent metabolic co-factors such as nicotinamide adenine dinucleotide [NAD(P)H]. NAD(P)H lifetime-based discrimination techniques have previously been used to develop metabolic cell signatures for diverse cell types including immune cells such as macrophages. However, FLIM could be even more effective in characterizing cell types if machine learning was used to classify cells by utilizing FLIM parameters for classification. Here, we demonstrate the potential for FLIM-based, label-free NAD(P)H imaging to distinguish different cell types using Artificial Neural Network (ANN)-based machine learning. For our biological use case, we used the challenge of differentiating microglia from other glia cell types in the brain. Microglia are the resident macrophages of the brain and spinal cord and play a critical role in maintaining the neural environment and responding to injury. Microglia are challenging to identify as most fluorescent labeling approaches cross-react with other immune cell types, are often insensitive to activation state, and require the use of multiple specialized antibody labels. Furthermore, the use of these extrinsic antibody labels prevents application in in vivo animal models and possible future clinical adaptations such as neurodegenerative pathologies. With the ANN-based NAD(P)H FLIM analysis approach, we found that microglia in cell culture mixed with other glial cells can be identified with more than 0.9 True Positive Rate (TPR). We also extended our approach to identify microglia in fixed brain tissue with a TPR of 0.79. In both cases the False Discovery Rate was around 30%. This method can be further extended to potentially study and better understand microglia's role in neurodegenerative disease with improved detection accuracy.

20.
Mil Med ; 185(Suppl 1): 462-469, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32074371

RESUMEN

INTRODUCTION: While debate persists over how to best prevent or treat amputation neuromas, the more pressing question of how to best marry residual nerves to state-of-the-art robotic prostheses for naturalistic control of a replacement limb has come to the fore. One potential solution involves the transposition of terminal nerve ends into the medullary canal of long bones, creating the neural interface within the bone. Nerve transposition into bone is a long-practiced, clinically relevant treatment for painful neuromas. Despite neuropathic pain relief, the physiological capacity of transposed nerves to conduct motor and sensory signals required for prosthesis control remains unknown. This pilot study addresses the hypotheses that (1) bone provides stability to transposed nerves and (2) nerves transposed into bone remain physiologically active, as they relate to the creation of an osseointegrated neural interface. METHODS: New Zealand white rabbits received transfemoral amputation, with the sciatic nerve transposed into the femur. RESULTS: Morphological examination demonstrates that nerves remain stable within the medullary canal, while compound nerve action potentials evoked by electrical stimulation of the residual nerve within the bone could be achieved at 12 weeks (p < 0.0005). CONCLUSION: Transposed nerves retain a degree of physiological function suitable for creating an osseointegrated neural interface.


Asunto(s)
Prótesis Anclada al Hueso/veterinaria , Red Nerviosa/fisiopatología , Conducción Nerviosa/fisiología , Prótesis e Implantes/veterinaria , Potenciales de Acción , Animales , Proyectos Piloto , Conejos/lesiones , Robótica/métodos , Robótica/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA