Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37516105

RESUMEN

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Asunto(s)
Linfocitos T CD8-positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Acetilación , Histonas/metabolismo , Cuerpos Cetónicos , Animales , Ratones
2.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172591

RESUMEN

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Asunto(s)
Histonas , Proteínas Serina-Treonina Quinasas , Humanos , Histonas/genética , Histonas/metabolismo , Acetilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Inflamación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Mol Cell ; 82(16): 2918-2921, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35985300

RESUMEN

Zhang et al. (2022) show that TCR signaling promotes the phosphorylation and activation of glycogen phosphorylase B (PYGB) in CD8+ memory T (Tmem) cells. PYGB-dependent glycogen mobilization provides a carbon source to support glycolysis and early Tmem cell recall responses.


Asunto(s)
Glucógeno , Células T de Memoria , Glucógeno/metabolismo , Glucólisis , Transducción de Señal
4.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747582

RESUMEN

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Activación de Linfocitos/inmunología , Metaboloma , Metabolómica , Animales , Proliferación Celular , Cromatografía de Gases y Espectrometría de Masas , Glucólisis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/genética , Metabolómica/métodos , Ratones , Estrés Oxidativo , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
5.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809979

RESUMEN

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Asunto(s)
Acetatos , Linfocitos T CD8-positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Acetatos/metabolismo , Ratones , Listeriosis/metabolismo , Listeriosis/inmunología , Listeriosis/microbiología , Listeria monocytogenes , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Ratones Endogámicos C57BL
6.
bioRxiv ; 2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333111

RESUMEN

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

7.
Cell Metab ; 34(9): 1298-1311.e6, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35981545

RESUMEN

How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.


Asunto(s)
Linfocitos T CD8-positivos , Carbono , Linfocitos T CD8-positivos/metabolismo , Carbono/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Nutrientes
8.
Cancer Cell ; 39(1): 28-37, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125860

RESUMEN

Immune cells' metabolism influences their differentiation and function. Given that a complex interplay of environmental factors within the tumor microenvironment (TME) can have a profound impact on the metabolic activities of immune, stromal, and tumor cell types, there is emerging interest to advance understanding of these diverse metabolic phenotypes in the TME. Here, we discuss cell-extrinsic contributions to the metabolic activities of immune cells. Then, considering recent technical advances in experimental systems and metabolic profiling technologies, we propose future directions to better understand how immune cells meet their metabolic demands in the TME, which can be leveraged for therapeutic benefit.


Asunto(s)
Sistema Inmunológico/metabolismo , Neoplasias/inmunología , Animales , Humanos , Metabolómica , Microambiente Tumoral
9.
Nat Protoc ; 16(9): 4494-4521, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34349284

RESUMEN

T cells are integral players in the adaptive immune system that readily adapt their metabolism to meet their energetic and biosynthetic needs. A major hurdle to understand physiologic T-cell metabolism has been the differences between in vitro cell culture conditions and the complex in vivo milieu. To address this, we have developed a protocol that merges traditional immunology infection models with whole-body metabolite infusion and mass-spectrometry-based metabolomic profiling to assess T-cell metabolism in vivo. In this protocol, pathogen-infected mice are infused via the tail vein with an isotopically labeled metabolite (2-6 h), followed by rapid magnetic bead isolation to purify T-cell populations (<1 h) and then stable isotope labeling analysis conducted by mass spectrometry (~1-2 d). This procedure enables researchers to evaluate metabolic substrate utilization into central carbon metabolic pathways (i.e., glycolysis and the tricarboxylic acid cycle) by specific T-cell subpopulations in the context of physiological immune responses in vivo.


Asunto(s)
Marcaje Isotópico , Metabolómica/métodos , Linfocitos T/metabolismo , Animales , Citometría de Flujo , Ratones
10.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523930

RESUMEN

Immune regulatory metabolites are key features of the tumor microenvironment (TME), yet with a few exceptions, their identities remain largely unknown. Here, we profiled tumor and T cells from tumor and ascites of patients with high-grade serous carcinoma (HGSC) to uncover the metabolomes of these distinct TME compartments. Cells within the ascites and tumor had pervasive metabolite differences, with a notable enrichment in 1-methylnicotinamide (MNA) in T cells infiltrating the tumor compared with ascites. Despite the elevated levels of MNA in T cells, the expression of nicotinamide N-methyltransferase, the enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine to nicotinamide, was restricted to fibroblasts and tumor cells. Functionally, MNA induces T cells to secrete the tumor-promoting cytokine tumor necrosis factor alpha. Thus, TME-derived MNA contributes to the immune modulation of T cells and represents a potential immunotherapy target to treat human cancer.


Asunto(s)
Ascitis , Neoplasias Ováricas , Ascitis/patología , Femenino , Humanos , Niacinamida/análogos & derivados , Niacinamida/farmacología , Neoplasias Ováricas/metabolismo , Microambiente Tumoral
11.
Cell Rep Med ; 1(2): 100014, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32478334

RESUMEN

Cancer cells display metabolic plasticity to survive stresses in the tumor microenvironment. Cellular adaptation to energetic stress is coordinated in part by signaling through the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Here, we demonstrate that miRNA-mediated silencing of LKB1 confers sensitivity of lymphoma cells to mitochondrial inhibition by biguanides. Using both classic (phenformin) and newly developed (IM156) biguanides, we demonstrate that elevated miR-17∼92 expression in Myc+ lymphoma cells promotes increased apoptosis to biguanide treatment in vitro and in vivo. This effect is driven by the miR-17-dependent silencing of LKB1, which reduces AMPK activation in response to complex I inhibition. Mechanistically, biguanide treatment induces metabolic stress in Myc+ lymphoma cells by inhibiting TCA cycle metabolism and mitochondrial respiration, exposing metabolic vulnerability. Finally, we demonstrate a direct correlation between miR-17∼92 expression and biguanide sensitivity in human cancer cells. Our results identify miR-17∼92 expression as a potential biomarker for biguanide sensitivity in malignancies.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Biguanidas/uso terapéutico , Linfoma/tratamiento farmacológico , ARN Largo no Codificante/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Células HEK293 , Humanos , Linfoma/genética , Linfoma/patología , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023446

RESUMEN

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Metionina , Esclerosis Múltiple , Células Th17/metabolismo , Animales , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacología , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Células Th17/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA