Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(2): 403-416, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34689388

RESUMEN

Amidst the global extinction crisis, climate change will expose ecosystems to more frequent and intense extreme climatic events, such as heatwaves. Yet, whether predator species loss-a prevailing characteristic of the extinction crisis-will exacerbate the ecological consequences of extreme climatic events remains largely unknown. Here, we show that the loss of predator species can interact with heatwaves to moderate the compositional stability of ecosystems. We exposed multitrophic stream communities, with and without a dominant predator species, to realistic current and future heatwaves and found that heatwaves destabilised algal communities by homogenising them in space. However, this happened only when the predator was absent. Additional heatwave impacts on multiple aspects of stream communities, including changes to the structure of algal and macroinvertebrate communities, as well as total algal biomass and its temporal variability, were not apparent during heatwaves and emerged only after the heatwaves had passed. Taken together, our results suggest that the ecological consequences of heatwaves can amplify over time as their impacts propagate through biological interaction networks, but the presence of predators can help to buffer such impacts. These findings underscore the importance of conserving trophic structure, and highlight the potential for species extinctions to amplify the effects of climate change and extreme events.


Asunto(s)
Ecosistema , Ríos , Biomasa , Cambio Climático , Extinción Biológica
2.
J Anim Ecol ; 91(5): 996-1009, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332535

RESUMEN

Although parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity. We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll-a, host diversity, coral cover, host abundance and island isolation. Using a model selection approach within a database of more than 1,200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance. Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, although complex life cycle parasite abundance was not associated with island area. This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.


Asunto(s)
Parásitos , Animales , Arrecifes de Coral , Ecosistema , Peces/parasitología , Interacciones Huésped-Parásitos , Estadios del Ciclo de Vida
3.
Oecologia ; 194(1-2): 65-74, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32876762

RESUMEN

Parasites are ecologically ubiquitous and, by modifying the physiology and behavior of their host organisms, act as key regulators of the dynamics and stability of ecosystems. It is, however, as yet unclear how parasitic relationships will act to moderate or accelerate the ecological impacts of global climate change. Here, we explore experimentally how the effects of parasites on both the physiology and behavior of their hosts can be moderated by warming, utilising a well-established aquatic host-parasite model system-the ecologically important amphipod Gammarus duebeni and its acanthocephalan parasite Polymorphus minutus. We show that, while only warming affected measured components of host physiology, parasite infection and warming both supressed predator-avoidance behavior of the host independently, yet in a similar manner. Six degrees of warming altered geotactic behaviors to the same extent as infection with behavior-manipulating parasites. These results indicate a novel mechanism by which parasites impact their ecosystems that could be critical to predicting the ecological impacts of warming. Our findings highlight the need for holistic knowledge of interaction networks, incorporating multiple interaction types and behaviors, to predict the effects of both warming and parasitism on the dynamics and stability of ecosystems.


Asunto(s)
Acantocéfalos , Anfípodos , Infecciones , Parásitos , Animales , Ecosistema , Interacciones Huésped-Parásitos
4.
Parasitology ; 146(12): 1528-1531, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31109386

RESUMEN

The ecological ubiquity of parasites and their potential impacts on host behaviour have led to the suggestion that parasites can act as ecosystem engineers, structuring their environment and physical habitats. Potential modification of the relationship between parasites and their hosts by climate change has important implications for how hosts interact with both their biotic and abiotic environment. Here, we show that warming and parasitic infection independently increase rates of bioturbation by a key detritivore in aquatic ecosystems (Gammarus). These findings have important implications for ecosystem structure and functioning in a warming world, as alterations to rates of bioturbation could significantly modify oxygenation penetration and nutrient cycling in benthic sediments of rivers and lakes. Our results demonstrate a need for future ecosystem management strategies to account for parasitic infection when predicting the impacts of a warming climate.


Asunto(s)
Acantocéfalos/fisiología , Anfípodos/fisiología , Anfípodos/parasitología , Calentamiento Global , Interacciones Huésped-Parásitos , Animales , Conducta Alimentaria
5.
Ecol Evol ; 13(12): e10755, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053794

RESUMEN

Parasites are ubiquitous, yet their effects on hosts are difficult to quantify and generalize across ecosystems. One promising metric of parasitic impact uses the metabolic theory of ecology (MTE) to calculate energy flux, an estimate of energy lost to parasites. We investigated the feasibility of using metabolic scaling rules to compare the energetic burden of parasitism among individuals. Specifically, we found substantial sensitivity of energy flux estimates to input parameters used in the MTE equation when using available data from a model host-parasite system (Gasterosteus aculeatus and Schistocephalus solidus). Using literature values, size data from parasitized wild fish, and a respirometry experiment, we estimate that a single S. solidus tapeworm may extract up to 32% of its stickleback host's baseline metabolic energy requirement, and that parasites in multiple infections may collectively extract up to 46%. The amount of energy siphoned from stickleback to tapeworms is large but did not instigate an increase in respiration rate in the current study. This emphasizes the importance of future work focusing on how parasites influence ecosystem energetics. The approach of using the MTE to calculate energy flux provides great promise as a quantitative foundation for such estimates and provides a more concrete metric of parasite impact on hosts than parasite abundance alone.

6.
PLoS One ; 18(9): e0290615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37703262

RESUMEN

The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis-a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrata and Bulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.


Asunto(s)
Biomphalaria , Schistosomatidae , Humanos , Animales , Astacoidea , Temperatura , Conducta Predatoria , Schistosoma
7.
Sci Total Environ ; 693: 133546, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31369893

RESUMEN

Elevated temperatures due to anthropogenic activities can improve the performance of non-native species that are adapted to higher temperatures than resident species. Ecosystems may experience higher temperature due to global stressors, such as climate change, or local stressors, including thermal effluents and urban heat islands. Using field surveys of population density and body size of the highly invasive and hot-adapted clam Corbicula fluminea in and out of two thermal effluents from power plants along the River Shannon, Ireland, we tested the hypothesis that C. fluminea performs better in thermal plumes. Shell length and body mass of C. fluminea in thermal effluents were 1.8 and 4.4 times higher, respectively, compared with adjacent unheated river sections. Density of C. fluminea was 13.7 times higher in heated, compared with unheated river reaches, leading to an increase in combined biomass per unit area of >50-fold. Our temperature data suggest an up to 2.5-fold increase of degree-days for growth and up to 5.2-fold increase of degree-days for larval incubation in the thermal plumes in River Shannon, compared with unheated conditions. Through enlarged body size, the elevated temperatures likely increase fecundity within the plumes. These findings illustrate that, in temperate climates, thermal plumes can form sanctuaries, where C. fluminea likely alters habitat, outpaces competitors and potentially dominates the energy flow through food webs. Furthermore, thermal plumes can act as stepping-stones and propagule banks for further proliferation of C. fluminea and other warm-adapted invaders.


Asunto(s)
Corbicula/fisiología , Monitoreo del Ambiente , Especies Introducidas , Centrales Eléctricas , Animales , Cambio Climático , Cadena Alimentaria , Calor , Irlanda , Densidad de Población , Ríos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA