Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38957986

RESUMEN

BACKGROUND: Tight control of cytoplasmic Ca2+ in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cav ß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.

2.
J Neuroinflammation ; 20(1): 100, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122019

RESUMEN

BACKGROUND: Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG35-55) in humanized TNFR1 knock-in mice. These were treated with a human-specific TNFR1-selective antagonistic antibody (H398) and a mouse-specific TNFR2 agonist (EHD2-sc-mTNFR2), both in combination and individually. Histopathological analysis of spinal cords was performed to investigate demyelination and inflammatory infiltration, as well as axonal and neuronal degeneration. Retinas were examined for any protective effects on retinal ganglion cell (RGC) degeneration and neuroprotective signalling pathways analysed by Western blotting. RESULTS: TNFR modulation successfully ameliorated symptoms of EAE and reduced demyelination, inflammatory infiltration and axonal degeneration. Furthermore, the combinatorial approach of blocking TNFR1 and stimulating TNFR2 signalling increased RGC survival and promoted the phosphorylation of Akt and NF-κB, both known to mediate neuroprotection. CONCLUSION: These results further support the potential of regulating the balance of TNFR signalling, through the co-modulation of TNFR1 and TNFR2 activity, as a novel therapeutic approach in treating inflammatory demyelinating disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Humanos , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Encefalomielitis Autoinmune Experimental/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anticuerpos/uso terapéutico
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768415

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterised by acute inflammation and subsequent neuro-axonal degeneration resulting in progressive neurological impairment. Aberrant immune system activation in the periphery and subsequent lymphocyte migration to the CNS contribute to the pathophysiology. Recent research has identified metabolic dysfunction as an additional feature of MS. It is already well known that energy deficiency in neurons caused by impaired mitochondrial oxidative phosphorylation results in ionic imbalances that trigger degenerative pathways contributing to white and grey matter atrophy. However, metabolic dysfunction in MS appears to be more widespread than the CNS. This review focuses on recent research assessing the metabolism and mitochondrial function in peripheral immune cells of MS patients and lymphocytes isolated from murine models of MS. Emerging evidence suggests that pharmacological modulation of lymphocytic metabolism may regulate their subtype differentiation and rebalance pro- and anti-inflammatory functions. As such, further understanding of MS immunometabolism may aid the identification of novel treatments to specifically target proinflammatory immune responses.


Asunto(s)
Esclerosis Múltiple , Humanos , Animales , Ratones , Neuronas/metabolismo , Mitocondrias/metabolismo , Linfocitos/metabolismo , Antiinflamatorios/uso terapéutico , Enfermedad Crónica
4.
J Neurochem ; 153(6): 693-709, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32031240

RESUMEN

Autoimmune optic neuritis (AON), a model of multiple sclerosis-associated optic neuritis, is accompanied by degeneration of retinal ganglion cells (RGCs) and optic nerve demyelination and axonal loss. In order to investigate the role of N-methyl-d-aspartate (NMDA) receptors in mediating RGC degeneration, upstream changes in the optic nerve actin cytoskeleton and associated deterioration in visual function, we induced AON in Brown Norway rats by immunization with myelin oligodendrocyte glycoprotein. Subsequently, visual acuity was assessed by recording visual evoked potentials and electroretinograms prior to extraction of optic nerves for western blot analysis and retinas for quantification of RGCs. As previously reported, in Brown Norway rats RGC degeneration is observed prior to onset of immune cell infiltration and demyelination of the optic nerves. However, within the optic nerve, destabilization of the actin cytoskeleton could be seen as indicated by an increase in the globular to filamentous actin ratio. Interestingly, these changes could be mimicked by intravitreal injection of glutamate, and similarly blocked by application of the NMDA receptor blocker MK-801, leading us to propose that prior to optic nerve lesion formation, NMDA receptor activation within the retina leads to retinal calcium accumulation, actin destabilization within the optic nerve as well as a deterioration of visual acuity during AON.


Asunto(s)
Neuritis Óptica/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/metabolismo , Animales , Maleato de Dizocilpina/farmacología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Potenciales Evocados Visuales/efectos de los fármacos , Potenciales Evocados Visuales/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Glicoproteína Mielina-Oligodendrócito/toxicidad , Nervio Óptico/efectos de los fármacos , Nervio Óptico/inmunología , Nervio Óptico/metabolismo , Neuritis Óptica/inducido químicamente , Neuritis Óptica/inmunología , Ratas , Ratas Endogámicas BN , Receptores de N-Metil-D-Aspartato/inmunología , Retina/efectos de los fármacos , Retina/inmunología
5.
Glia ; 67(3): 512-524, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578556

RESUMEN

Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Although it is the presenting symptom in many cases, the initial events are currently unknown. However, in the earliest stages of autoimmune optic neuritis in rats, pathological changes are already apparent such as microglial activation and disturbances in myelin ultrastructure of the optic nerves. αB-crystallin is a heat-shock protein induced in cells undergoing cellular stress and has been reported to be up-regulated in both multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Therefore, we wished to investigate the timing and localization of its expression in autoimmune optic neuritis. Although loss of oligodendrocytes was not observed until the later disease stages accompanying immune cell infiltration and demyelination, an increase in oligodendrocyte αB-crystallin was observed during the preclinical stages. This was most pronounced within the optic nerve head and was associated with areas of IgG deposition. Since treatment of isolated oligodendrocytes with sera from myelin oligodendrocyte glycoprotein (MOG)-immunized animals induced an increase in αB-crystallin expression, as did passive transfer of sera from MOG-immunized animals to unimmunized recipients, we propose that the partially permeable blood-brain barrier of the optic nerve head may present an opportunity for blood-borne components such as anti-MOG antibodies to come into contact with oligodendrocytes as one of the earliest events in disease development.


Asunto(s)
Enfermedades Autoinmunes/patología , Encefalomielitis Autoinmune Experimental/patología , Nervio Óptico/patología , Neuritis Óptica/patología , Animales , Enfermedades Autoinmunes/inmunología , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Oligodendroglía/inmunología , Oligodendroglía/patología , Nervio Óptico/inmunología , Neuritis Óptica/inmunología , Ratas , Ratas Sprague-Dawley
6.
7.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052285

RESUMEN

Neuronal subpopulations display differential vulnerabilities to disease, but the factors that determine their susceptibility are poorly understood. Toxic increases in intracellular calcium are a key factor in several neurodegenerative processes, with calcium-binding proteins providing an important first line of defense through their ability to buffer incoming calcium, allowing the neuron to quickly achieve homeostasis. Since neurons expressing different calcium-binding proteins have been reported to be differentially susceptible to degeneration, it can be hypothesized that rather than just serving as markers of different neuronal subpopulations, they might actually be a key determinant of survival. In this review, we will summarize some of the evidence that expression of the EF-hand calcium-binding proteins, calbindin, calretinin and parvalbumin, may influence the susceptibility of distinct neuronal subpopulations to disease processes.


Asunto(s)
Calbindinas/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Calbindinas/genética , Humanos , Neuronas/metabolismo
8.
Cell Tissue Res ; 357(2): 455-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24326615

RESUMEN

Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Señalización del Calcio , Calcio/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/patología , Autoinmunidad , Calcio/inmunología , Canales de Calcio/inmunología , Canales de Calcio/metabolismo , Humanos , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/patología , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología
9.
J Neurosci ; 32(16): 5585-97, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22514320

RESUMEN

Neurodegeneration plays a major role in multiple sclerosis (MS), in which it is thought to be the main determinant of permanent disability. However, the relationship between the immune response and the onset of neurodegeneration is still a matter of debate. Moreover, recent findings in MS patients raised the question of whether primary neurodegenerative changes can occur in the retina independent of optic nerve inflammation. Using a rat model of MS that frequently leads to optic neuritis, we have investigated the interconnection between neurodegenerative and inflammatory changes in the retina and the optic nerves with special focus on preclinical disease stages. We report that, before manifestation of optic neuritis, characterized by inflammatory infiltration and demyelination of the optic nerve, degeneration of retinal ganglion cell bodies had already begun and ultrastructural signs of axon degeneration could be detected. In addition, we observed an early activation of resident microglia in the retina. In the optic nerve, the highest density of activated microglia was found within the optic nerve head. In parallel, localized breakdown in the integrity of the blood-retinal barrier and aberrations in the organization of the blood-brain barrier marker aquaporin-4 in the optic nerves were observed during the preclinical phase, before onset of optic neuritis. From these findings, we conclude that early and subtle inflammatory changes in the retina and/or the optic nerve head reminiscent of those suggested for preclinical MS lesions may initiate the process of neurodegeneration in the retina before major histopathological signs of MS become manifest.


Asunto(s)
Esclerosis Múltiple/complicaciones , Retina/patología , Degeneración Retiniana/etiología , Degeneración Retiniana/patología , Animales , Antígenos CD/metabolismo , Acuaporina 4/metabolismo , Barrera Hematorretinal/fisiopatología , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Adyuvante de Freund/efectos adversos , Proteína Ácida Fibrilar de la Glía/metabolismo , Etiquetado Corte-Fin in Situ , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Microglía/patología , Microscopía Electrónica de Transmisión , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Proteínas de la Mielina/efectos adversos , Proteínas de la Mielina/inmunología , Proteínas de la Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Ocludina , Nervio Óptico/patología , Nervio Óptico/ultraestructura , Ratas , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Estilbamidinas , Factores de Tiempo
10.
J Neuroendocrinol ; 35(11): e13286, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37309259

RESUMEN

Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.


Asunto(s)
Neurotransmisores , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Neuronas/metabolismo , Fenotipo , Ratones Noqueados
11.
Am J Pathol ; 178(6): 2823-31, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21641403

RESUMEN

Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested. However, how these two functions interplay in autoimmune disease is unclear. To address this, autoimmune optic neuritis, a model of multiple sclerosis, was induced in C57Bl/6 mice, and up-regulation of PrP(C) was observed throughout the disease course. In addition, compared with wild-type mice, in PrP(C)-deficient mice and mice overexpressing PrP(C), histopathologic analysis demonstrated that optic neuritis was exacerbated, as indicated by axonal degeneration, inflammatory infiltration, and demyelination. However, significant neuroprotection of retinal ganglion cells, the axons of which form the optic nerve, was observed in mice that overexpressed PrP(C). Conversely, mice lacking PrP(C) demonstrated significantly more neurodegeneration. This suggests that PrP(C) may have a neuroprotective function independent of its role in regulating the immune response.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/patología , Fármacos Neuroprotectores/farmacología , Neuritis Óptica/complicaciones , Neuritis Óptica/patología , Priones/metabolismo , Animales , Axones/efectos de los fármacos , Axones/patología , Citoprotección/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Regulación hacia Arriba/efectos de los fármacos
12.
Nat Commun ; 13(1): 1226, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264557

RESUMEN

The 20S proteasome (20S) facilitates turnover of most eukaryotic proteins. Substrate entry into the 20S first requires opening of gating loops through binding of HbYX motifs that are present at the C-termini of certain proteasome activators (PAs). The HbYX motif has been predominantly characterized in the archaeal 20S, whereas little is known about the sequence preferences of the human 20S (h20S). Here, we synthesize and screen ~120 HbYX-like peptides, revealing unexpected differences from the archaeal system and defining the h20S recognition sequence as the Y-F/Y (YФ) motif. To gain further insight, we create a functional chimera of the optimized sequence, NLSYYT, fused to the model activator, PA26E102A. A cryo-EM structure of PA26E102A-h20S is used to identify key interactions, including non-canonical contacts and gate-opening mechanisms. Finally, we demonstrate that the YФ sequence preferences are tuned by valency, allowing multivalent PAs to sample greater sequence space. These results expand the model for termini-mediated gating and provide a template for the design of h20S activators.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas , Citoplasma/metabolismo , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Relación Estructura-Actividad
13.
Exp Eye Res ; 93(1): 82-90, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21586286

RESUMEN

Optical coherence tomography (OCT) is becoming the state-of-the-art method for the non-invasive imaging of a variety of ocular diseases. The aim of this study was to assess the application of OCT for the in vivo monitoring and follow-up of pathological changes during experimental autoimmune uveoretinitis (EAU) in rats. Initially we established OCT imaging in healthy brown Norway rats and correlated it with retinal histology. Subsequently, we induced EAU and imaged animals by OCT throughout the pre-peak, peak, and post-peak phases of the disease. The sensitivity of OCT imaging was determined by comparison with clinical EAU and histopathology scores obtained ex vivo at several time points throughout the disease course. Our data demonstrate that OCT imaging of the healthy rat retina closely correlates with histological observations and allows the clear visualization of all retinal layers. After induction of EAU, the first pathological changes could be detected by OCT at day (d) 8 post-immunization (p.i.) which corresponded to the time point of clinical disease onset. An increase in retinal thickness (RT) was detected from d10 p.i. onwards which peaked at d16 p.i. and decreased again to near control levels by d20 p.i. We introduce a novel semi-quantitative OCT scoring which correlates with histopathological findings and complements the clinical scores. Therefore, we conclude that OCT is an easily accessible, non-invasive tool for detection and follow-up of histopathological changes during EAU in rats. Indeed, significant differences in RT between different stages of EAU suggest that this OCT parameter is a sensitive marker for distinguishing disease phases in vivo.


Asunto(s)
Enfermedades Autoinmunes/diagnóstico , Modelos Animales de Enfermedad , Retina/patología , Retinitis/diagnóstico , Tomografía de Coherencia Óptica , Uveítis/diagnóstico , Animales , Enfermedades Autoinmunes/clasificación , Proteínas del Ojo , Femenino , Ratas , Ratas Endogámicas BN , Retinitis/clasificación , Proteínas de Unión al Retinol , Sensibilidad y Especificidad , Uveítis/clasificación
14.
Front Immunol ; 12: 705485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305946

RESUMEN

Therapeutics that block tumor necrosis factor (TNF), and thus activation of TNF receptor 1 (TNFR1) and TNFR2, are clinically used to treat inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, TNFR1 and TNFR2 work antithetically to balance immune responses involved in inflammatory diseases. In particular, TNFR1 promotes inflammation and tissue degeneration, whereas TNFR2 contributes to immune modulation and tissue regeneration. We, therefore, have developed the monovalent antagonistic anti-TNFR1 antibody derivative Atrosimab to selectively block TNFR1 signaling, while leaving TNFR2 signaling unaffected. Here, we describe that Atrosimab is highly stable at different storage temperatures and demonstrate its therapeutic efficacy in mouse models of acute and chronic inflammation, including experimental arthritis, non-alcoholic steatohepatitis (NASH) and experimental autoimmune encephalomyelitis (EAE). Our data support the hypothesis that it is sufficient to block TNFR1 signaling, while leaving immune modulatory and regenerative responses via TNFR2 intact, to induce therapeutic effects. Collectively, we demonstrate the therapeutic potential of the human TNFR1 antagonist Atrosimab for treatment of chronic inflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Factores Inmunológicos/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Ratones , Ratones Transgénicos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
15.
Ann Neurol ; 66(1): 81-93, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19670438

RESUMEN

OBJECTIVE: The aim of this study was to investigate the role of voltage-dependent calcium channels (VDCCs) in axon degeneration during autoimmune optic neuritis. METHODS: Calcium ion (Ca(2+)) influx into the optic nerve (ON) through VDCCs was investigated in a rat model of optic neuritis using manganese-enhanced magnetic resonance imaging and in vivo calcium imaging. After having identified the most relevant channel subtype (N-type VDCCs), we correlated immunohistochemistry of channel expression with ON histopathology. In the confirmatory part of this work, we performed a treatment study using omega-conotoxin GVIA, an N-type specific blocker. RESULTS: We observed that pathological Ca(2+) influx into ONs during optic neuritis is mediated via N-type VDCCs. By analyzing the expression of VDCCs in the inflamed ONs, we detected an upregulation of alpha(1B), the pore-forming subunit of N-type VDCCs, in demyelinated axons. However, high expression levels were also found on macrophages/activated microglia, and lower levels were detected on astrocytes. The relevance of N-type VDCCs for inflammation-induced axonal degeneration and the severity of optic neuritis was corroborated by treatment with omega-conotoxin GVIA. This blocker led to decreased axon and myelin degeneration in the ONs together with a reduced number of macrophages/activated microglia. These protective effects were confirmed by analyzing the spinal cords of the same animals. INTERPRETATION: We conclude that N-type VDCCs play an important role in inflammation-induced axon degeneration via two mechanisms: First, they directly mediate toxic Ca(2+) influx into the axons; and second, they contribute to macrophage/microglia function, thereby promoting secondary axonal damage. Ann Neurol 2009;66:81-93.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Canales de Calcio Tipo N/metabolismo , Neuritis Óptica/metabolismo , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Amlodipino/farmacología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Enfermedades Autoinmunes/inducido químicamente , Enfermedades Autoinmunes/patología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Ectodisplasinas/metabolismo , Ácido Egtácico/análogos & derivados , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Imagen por Resonancia Magnética/métodos , Manganeso/metabolismo , Proteínas de la Mielina , Glicoproteína Asociada a Mielina , Glicoproteína Mielina-Oligodendrócito , Proteínas de Neoplasias/metabolismo , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Neuritis Óptica/inducido químicamente , Neuritis Óptica/patología , Quinoxalinas/farmacología , Proteínas de Unión al ARN/metabolismo , Ratas , omega-Conotoxina GVIA/farmacología
16.
Invest Ophthalmol Vis Sci ; 61(5): 37, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32437548

RESUMEN

Purpose: To determine the influence of RIBEYE deletion and the resulting absence of synaptic ribbons on retinal light signaling by electroretinography. Methods: Full-field flash electroretinograms (ERGs) were recorded in RIBEYE knock-out (KO) and wild-type (WT) littermate mice under photopic and scotopic conditions, with oscillatory potentials (OPs) extracted by digital filtering. Flicker ERGs and ERGs following intravitreal injection of pharmacological agents were also obtained under scotopic conditions. Results: The a-wave amplitudes were unchanged between RIBEYE KO and WT mice; however, the b-wave amplitudes were reduced in KOs under scotopic, but not photopic, conditions. Increasing stimulation frequency led to a greater reduction in RIBEYE KO b-wave amplitudes compared with WTs. Furthermore, we observed prominent, supernormal OPs in RIBEYE KO mice in comparison with WT mice. Following intravitreal injections with l-2 amino-4-phosphonobutyric acid and cis-2,3 piperidine dicarboxylic acid to block ON and OFF responses at photoreceptor synapses, OPs were completely abolished in both mice types, indicating a synaptic origin of the prominent OPs in the KOs. Conversely, tetrodotoxin treatment to block voltage-gated Na+ channels/spiking neurons did not differentially affect OPs in WT and KO mice. Conclusions: The decreased scotopic b-wave and decreased responses to increased stimulation frequencies are consistent with signaling malfunctions at photoreceptor and inner retinal ribbon synapses. Because phototransduction in the photoreceptor outer segments is unaffected in the KOs, their supernormal OPs presumably result from a dysfunction in retinal synapses. The relatively mild ERG phenotype in KO mice, particularly in the photopic range, is probably caused by compensatory mechanisms in retinal signaling pathways.


Asunto(s)
Oxidorreductasas de Alcohol/fisiología , Proteínas Co-Represoras/fisiología , Electrorretinografía , Células Fotorreceptoras Retinianas Conos/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Visión Ocular/fisiología , Aminobutiratos/farmacología , Animales , Potenciales Evocados Visuales/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Eliminación de Gen , Inyecciones Intravítreas , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Visión Nocturna/fisiología , Estimulación Luminosa , Piperidinas/farmacología , Células Fotorreceptoras Retinianas Conos/ultraestructura , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Tetrodotoxina/farmacología
17.
ACS Med Chem Lett ; 11(9): 1704-1710, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32944137

RESUMEN

The membrane permeability of nucleotide-based drugs, such as sofosbuvir (Sovaldi), requires installation of phosphate-caging groups. One strategy, termed "ProTide", masks the anionic phosphate through an N-linked amino ester and an O-linked aromatic phospho-ester, such that release of the active drug requires consecutive enzymatic liberation by an esterase and then a phosphoramidase, such as Hint1. Because Hint1 is known to be selective for nucleotides, it was not clear if the ProTide approach could be deployed for non-nucleotides. Here, we demonstrate that caging of a phosphate-containing inhibitor of the prolyl isomerase Pin1 increases its permeability. Moreover, this compound was processed by both esterase and phosphoramidase activity, releasing the active molecule to bind and inhibit Pin1 in cells. Thus, Hint1 appears to recognize a broader set of substrates than previously appreciated. It seems possible that other potent, but impermeable, phosphate-containing inhibitors might likewise benefit from this approach.

18.
Am J Pathol ; 173(5): 1496-507, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18832577

RESUMEN

Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system that results in persistent impairment in young adults. During chronic progressive disease stages, there is a strong correlation between neurodegeneration and disability. Current therapies fail to prevent progression of neurological impairment during these disease stages. Flupirtine, a drug approved for oral use in patients suffering from chronic pain, was used in a rat model of autoimmune optic neuritis and significantly increased the survival of retinal ganglion cells, the neurons that form the axons of the optic nerve. When flupirtine was combined with interferon-beta, an established immunomodulatory therapy for MS, visual functions of the animals were improved during the acute phase of optic neuritis. Furthermore, flupirtine protected retinal ganglion cells from degeneration in a noninflammatory animal model of optic nerve transection. Although flupirtine was shown previously to increase neuronal survival by Bcl-2 up-regulation, this mechanism does not appear to play a role in flupirtine-mediated protection of retinal ganglion cells either in vitro or in vivo. Instead, we showed through patch-clamp investigations that the activation of inwardly rectifying potassium channels is involved in flupirtine-mediated neuroprotection. Considering the few side effects reported in patients who receive long-term flupirtine treatment for chronic pain, our results indicate that this drug is an interesting candidate for further evaluation of its neuroprotective potential in MS.


Asunto(s)
Aminopiridinas/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Neuritis Óptica/tratamiento farmacológico , Aminopiridinas/sangre , Aminopiridinas/farmacología , Animales , Enfermedades Autoinmunes/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Progresión de la Enfermedad , Quimioterapia Combinada , Potenciales Evocados Visuales/efectos de los fármacos , Femenino , Inflamación/patología , Interferón beta/uso terapéutico , Activación del Canal Iónico/efectos de los fármacos , Fármacos Neuroprotectores/sangre , Fármacos Neuroprotectores/farmacología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Neuritis Óptica/patología , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Wistar , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología
19.
J Neuropathol Exp Neurol ; 77(5): 361-373, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444299

RESUMEN

Disturbances in the nodes of Ranvier are an early phenomenon in many CNS disorders, including the autoimmune demyelinating disease multiple sclerosis (MS). Using an animal model of optic neuritis, a common early symptom of MS, we have investigated nodal and paranodal compartments in the optic nerve during disease progression. Both nodes and paranodes, as identified by immunohistochemistry against sodium channels (Nav) and Caspr, respectively, were observed to increase in length during the late induction phase of the disease, prior to onset of the demyelination and immune cell infiltration characteristic of optic neuritis. These changes were correlated with both axonal stress and microglial/macrophage activation, and were most apparent in the vicinity of the retrobulbar optic nerve head, the unmyelinated region of the optic nerve where retinal ganglion cell axons exit the retina. Using intravitreal glutamate injection as a model of a primary retinal insult, we demonstrate that this can induce similar nodal and paranodal changes. This may suggest that onset of neurodegeneration in the absence of demyelination, as reported in several studies into the nonaffected eyes of MS patients, may give rise to subtle disturbances in the axo-glial junction.


Asunto(s)
Enfermedades Autoinmunes/patología , Neuritis Óptica/patología , Animales , Axones/patología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inmunohistoquímica , Microglía/patología , Degeneración Nerviosa/patología , Nervio Óptico/patología , Ratas , Células Ganglionares de la Retina/patología , Canales de Sodio/metabolismo
20.
Nat Catal ; 1: 673-679, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221249

RESUMEN

Two-component C-H bond additions to a large variety of coupling partners have been developed with applications towards materials, natural product and drug synthesis. Sequential three-component C-H bond addition across two different coupling partners potentially enables the convergent synthesis of complex molecular scaffolds from simple precursors. Here, we report three-component Co(III)-catalyzed C-H bond additions to dienes and aldehydes that proceeds with high regio- and stereoselectivity resulting in two new carbon-carbon σ-bonds and from four to six new stereocenters. The reaction relies on the synergistic reactivity of the diene and aldehyde with neither undergoing C-H bond addition alone. A detailed mechanism is supported by X-ray structural characterization of a Co(III)-allyl intermediate, observed transfer of stereochemical information, and kinetic isotope studies. The applicability of the method to biologically relevant molecules is exemplified by the rapid synthesis of the western fragment of the complex ionophore antibiotic lasalocid A.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA