Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 210(11): 1804-1814, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074207

RESUMEN

Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.


Asunto(s)
Linfocitos B , Reparación del ADN , Animales , Ratones , Linfocitos B/metabolismo , Técnicas de Cultivo de Célula , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Mutación , Hipermutación Somática de Inmunoglobulina
2.
Polyhedron ; 2522024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38435834

RESUMEN

The oxygen evolution reaction (OER) of water splitting is essential to electrochemical energy storage applications. While nickel electrodes are widely available heterogeneous OER catalysts, homogeneous nickel catalysts for OER are underexplored. Here we report two carbene-ligated nickel(II) complexes that are exceptionally robust and efficient homogeneous water oxidation catalysts. Remarkably, these novel nickel complexes can assemble a stable thin film onto a metal electrode through poly-imidazole bridges, making them supported heterogeneous electrochemical catalysts that are resilient to leaching and stripping. Unlike molecular catalysts and nanoparticle catalysts, such electrode-supported metal-complex catalysts for OER are rare and have the potential to inspire new designs. The electrochemical OER with our nickel-carbene catalysts exhibits excellent current densities with high efficiency, low Tafel slope, and useful longevity for a base metal catalyst. Our data show that imidazole carbene ligands stay bonded to the nickel(II) centers throughout the catalysis, which allows the facile oxygen evolution.

3.
J Am Chem Soc ; 145(9): 5222-5230, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36779837

RESUMEN

Polystyrene (PS) is one of the most used yet infrequently recycled plastics. Although manufactured on the scale of 300 million tons per year globally, current approaches toward PS degradation are energy- and carbon-inefficient, slow, and/or limited in the value that they reclaim. We recently reported a scalable process to degrade post-consumer polyethylene-containing waste streams into carboxylic diacids. Engineered fungal strains then upgrade these diacids biosynthetically to synthesize pharmacologically active secondary metabolites. Herein, we apply a similar reaction to rapidly convert PS to benzoic acid in high yield. Engineered strains of the filamentous fungus Aspergillus nidulans then biosynthetically upgrade PS-derived crude benzoic acid to the structurally diverse secondary metabolites ergothioneine, pleuromutilin, and mutilin. Further, we expand the catalog of plastic-derived products to include spores of the industrially relevant biocontrol agent Aspergillus flavus Af36 from crude PS-derived benzoic acid.


Asunto(s)
Productos Biológicos , Poliestirenos , Poliestirenos/metabolismo , Productos Biológicos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Aspergillus flavus/metabolismo
4.
J Health Polit Policy Law ; 48(6): 919-950, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497876

RESUMEN

The Medicare Advantage program was created to expand beneficiary choice and to reduce spending through capitated payment to private insurers. However, many stakeholders now argue that Medicare Advantage is failing to deliver on its promise to reduce spending. Three problematic design features in Medicare Advantage payment policy have received particular scrutiny: (1) how baseline payments to insurers are determined, (2) how variation in patient risk affects insurer payment, and (3) how payments to insurers are adjusted for quality performance. The authors analyze the statute underlying these three design features and explore legislative and regulatory strategies for improving Medicare Advantage. They conclude that regulatory approaches for improving risk adjustment and for recouping overpayments from risk-score gaming have the highest potential impact and are the most feasible improvement measures to implement.


Asunto(s)
Medicare Part C , Anciano , Humanos , Estados Unidos , Políticas
5.
Angew Chem Int Ed Engl ; 62(4): e202214609, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417558

RESUMEN

Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post-consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungus Aspergillus nidulans. As a proof of principle, we have engineered strains of A. nidulans to synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled.


Asunto(s)
Aspergillus nidulans , Polietilenos , Polietilenos/química , Plásticos/química , Catálisis , Aspergillus nidulans/metabolismo
6.
Environ Sci Technol ; 56(12): 8756-8764, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35671187

RESUMEN

Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater effluent to a very high purity level, typically resulting in a product water that is essentially deionized water, often containing less than 100 µg/L organic carbon. However, recent research has found that low-molecular-weight aldehydes, which are toxic electrophiles, comprise a significant fraction of the final organic carbon pool in recycled wastewater in certain treatment configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen serving as the terminal electron acceptor. Mass balances are essentially quantitative across a range of aldehydes, and pseudo-first-order reaction kinetics are observed in batch reactors, with kobs varying from 0.6 h-1 for acetaldehyde to 4.6 h-1 for hexanal, while they are low for unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step, and the reaction appears to proceed primarily through a base-promoted ß-hydride elimination mechanism from the hydrated gem-diol form of the corresponding aldehyde. This is the first report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant using dissolved oxygen.


Asunto(s)
Oxígeno , Aguas Residuales , Aldehídos , Carbono , Oxidación-Reducción , Agua
7.
Phys Rev Lett ; 125(16): 167201, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124855

RESUMEN

We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr_{4}S_{8}. We observe an unconventional magnetic excitation spectrum with a separation of high- and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parametrize the spin Hamiltonian. We find that interactions are ferromagnetic within the large and small tetrahedra of the breathing pyrochlore lattice, but antiferromagnetic further-neighbor interactions are also essential to explain our data, in qualitative agreement with density-functional-theory predictions [Ghosh et al., npj Quantum Mater. 4, 63 (2019)2397-464810.1038/s41535-019-0202-z]. We explain the origin of geometrical frustration in LiGaCr_{4}S_{8} in terms of net antiferromagnetic coupling between emergent tetrahedral spin clusters that occupy a face-centered-cubic lattice. Our results provide insight into the emergence of frustration in the presence of strong further-neighbor couplings, and a blueprint for the determination of magnetic interactions in classical spin liquids.

8.
Phys Chem Chem Phys ; 22(20): 11174-11196, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32393932

RESUMEN

High throughput experimentation in heterogeneous catalysis provides an efficient solution to the generation of large datasets under reproducible conditions. Knowledge extraction from these datasets has mostly been performed using statistical methods, targeting the optimization of catalyst formulations. The combination of advanced machine learning methodologies with high-throughput experimentation has enormous potential to accelerate the predictive discovery of novel catalyst formulations that do not exist with current statistical design of experiments. This perspective describes selective examples ranging from statistical design of experiments for catalyst synthesis to genetic algorithms applied to catalyst optimization, and finally random forest machine learning using experimental data for the discovery of novel catalysts. Lastly, this perspective also provides an outlook on advanced machine learning methodologies as applied to experimental data for materials discovery.

9.
J Clin Pharm Ther ; 45(2): 384-387, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31782821

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: Allogeneic stem cell transplantation patients are often on immunosuppression including calcineurin inhibitors post-transplant for prevention of graft-versus-host disease. Recent data suggested that addition of midostaurin, a FLT-3 mutant kinase inhibitor, maintenance can reduce risk of relapse by 46% at 18 months post-transplant. CASE DESCRIPTION: Patient is a post-allogenetic stem cell transplant patient started on midostaurin for maintenance therapy. Patient had stable serum levels of cyclosporine with a sudden 70% increase in serum level shortly after starting midostaurin. Patient had no other medication changes or laboratory abnormalities that would suggest the change was caused by alternate factors. WHAT IS NEW AND CONCLUSION: This data suggest that midostaurin and cyclosporine have a possible previously unidentified drug interaction leading to elevation immunosuppression serum levels that need to be accounted for in practice.


Asunto(s)
Ciclosporina/farmacocinética , Trasplante de Células Madre Hematopoyéticas/métodos , Inmunosupresores/farmacocinética , Estaurosporina/análogos & derivados , Anciano , Inhibidores de la Calcineurina/administración & dosificación , Inhibidores de la Calcineurina/farmacocinética , Ciclosporina/administración & dosificación , Interacciones Farmacológicas , Humanos , Inmunosupresores/administración & dosificación , Masculino , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Estaurosporina/administración & dosificación , Estaurosporina/farmacología
10.
Polyhedron ; 1822020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32410767

RESUMEN

We report iridium catalysts IrCl(η5-Cp*)(κ2-(2-pyridyl)CH2NSO2C6H4X) (1-Me, X = CH3 and 1-F, X = F) for transfer hydrogenation of ketones with 2-propanol that operate by a previously unseen metal-ligand cooperative mechanism. Under the reaction conditions, complexes 1 (1-Me and 1-F) derivatize to a series of catalytic intermediates: Ir(η5-Cp*)(κ2-(C5H4N)CHNSO2Ar) (2), IrH(η5Cp*)(κ2-(2-pyridyl)CH2NSO2Ar) (3), and Ir(η5-Cp*)(κ3-(2-pyridyl)CH2NSO2Ar) (4). The structures of 1-Me and 4-Me were established by single-crystal X-ray diffraction. A rate-determining, concerted hydrogen transfer step (2 + R2CHOH ⇄ 3 + R2CO) is suggested by kinetic isotope effects, Eyring parameters (ΔH ≠ = 29.1(8) kcal mol-1 and ΔS ≠ = -17(19) eu), proton-hydride fidelity, and DFT calculations. According to DFT, a nine-membered cyclic transition state is stabilized by an alcohol molecule that serves as a proton shuttle.

11.
Acc Chem Res ; 50(1): 86-95, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28032510

RESUMEN

One of the greatest challenges in using H2 as a fuel source is finding a safe, efficient, and inexpensive method for its storage. Ammonia borane (AB) is a solid hydrogen storage material that has garnered attention for its high hydrogen weight density (19.6 wt %) and ease of handling and transport. Hydrogen release from ammonia borane is mediated by either hydrolysis, thus giving borate products that are difficult to rereduce, or direct dehydrogenation. Catalytic AB dehydrogenation has thus been a popular topic in recent years, motivated both by applications in hydrogen storage and main group synthetic chemistry. This Account is a complete description of work from our laboratory in ruthenium-catalyzed ammonia borane dehydrogenation over the last 6 years, beginning with the Shvo catalyst and resulting ultimately in the development of optimized, leading catalysts for efficient hydrogen release. We have studied AB dehydrogenation with Shvo's catalyst extensively and generated a detailed understanding of the role that borazine, a dehydrogenation product, plays in the reaction: it is a poison for both Shvo's catalyst and PEM fuel cells. Through independent syntheses of Shvo derivatives, we found a protective mechanism wherein catalyst deactivation by borazine is prevented by coordination of a ligand that might otherwise be a catalytic poison. These studies showed how a bidentate N-N ligand can transform the Shvo into a more reactive species for AB dehydrogenation that minimizes accumulation of borazine. Simultaneously, we designed novel ruthenium catalysts that contain a Lewis acidic boron to replace the Shvo -OH proton, thus offering more flexibility to optimize hydrogen release and take on more general problems in hydride abstraction. Our scorpionate-ligated ruthenium species (12) is a best-of-class catalyst for homogeneous dehydrogenation of ammonia borane in terms of its extent of hydrogen release (4.6 wt %), air tolerance, and reusability. Moreover, a synthetically simplified ruthenium complex supported by the inexpensive bis(pyrazolyl)borate ligand is a comparably good catalyst for AB dehydrogenation, among other reactions. In this Account, we present a detailed, concise description of how our work with the Shvo system progressed to the development of our very reactive and flexible dual-site boron-ruthenium catalysts.

12.
Angew Chem Int Ed Engl ; 57(36): 11711-11715, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30051545

RESUMEN

Cesium lead halide perovskites are an emerging class of quantum dots (QDs) that have shown promise in a variety of applications; however, their properties are highly dependent on their surface chemistry. To this point, the thermodynamics of ligand binding remain unstudied. Herein, 1 H NMR methods were used to quantify the thermodynamics of ligand exchange on CsPbBr3 QDs. Both oleic acid and oleylamine native ligands dynamically interact with the CsPbBr3 QD surface, having individual surface densities of 1.2-1.7 nm-2 . 10-Undecenoic acid undergoes an exergonic exchange equilibrium with bound oleate (Keq =1.97) at 25 °C while 10-undecenylphosphonic acid undergoes irreversible ligand exchange. Undec-10-en-1-amine exergonically exchanges with oleylamine (Keq =2.52) at 25 °C. Exchange occurs with carboxylic acids, phosphonic acids, and amines on CsPbBr3 QDs without etching of the nanocrystal surface; increases in the steady-state PL intensities correlate with more strongly bound conjugate base ligands.

13.
Rapid Commun Mass Spectrom ; 31(19): 1633-1640, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28763166

RESUMEN

RATIONALE: Methylation protocols commonly call for acidic, hot conditions that are known to promote organic 1 H/2 H exchange in aromatic and aliphatic C-H bonds. Here we tested two such commonly used methods and compared a third that avoids these acidic conditions, to quantify isotope effects with each method and to directly determine acidic-exchange rates relevant to experimental conditions. METHODS: We compared acidic and non-acidic methylation approaches catalyzed by hydrochloric acid, acetyl chloride and EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)/DMAP (4-dimethylaminopyridine), respectively. These were applied to two analytes: phthalic acid (an aromatic) and octacosanoic acid (an aliphatic). We analyzed yield by gas chromatography/flame ionization (GC/FID) and hydrogen and carbon isotopic compositions by isotope ratio mass spectrometry (GC/IRMS). We quantified the 1 H/2 H exchange rate on dimethyl phthalate under acidic conditions with proton nuclear magnetic resonance (1 H-NMR) measurements. RESULTS: The δ2 H and δ13 C values and yield were equivalent among the three methods for methyl octacosanoate. The two acidic methods resulted in comparable yield and isotopic composition of dimethyl phthalate; however, the non-acidic method resulted in lower δ2 H and δ13 C values perhaps due to low yields. Concerns over acid-catalyzed 1 H/2 H exchange are unwarranted as the effect was trivial over a 12-h reaction time. CONCLUSIONS: We find product isolation yield and evaporation to be the main concerns in the accurate determination of isotopic composition. 1 H/2 H exchange reactions are too slow to cause measurable isotope fractionation over the typical duration and reaction conditions used in methylation. Thus, we are able to recommend continued use of acidic catalysts in such methylation reactions for both aliphatic and aromatic compounds.

14.
Bioorg Med Chem ; 25(1): 421-439, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27876249

RESUMEN

A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N1(N3)) and highly lipophilic substituents at the carbon atoms (C2 and C5(C6)) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/toxicidad , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/toxicidad , Línea Celular Tumoral , Cisplatino/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones Endogámicos C57BL , Solubilidad , Relación Estructura-Actividad
15.
J Sport Rehabil ; 26(3)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095109

RESUMEN

CONTEXT: Postural control plays an essential role in concussion evaluation. The Stability Evaluation Test (SET) aims to objectively analyze postural control by measuring sway velocity on the NeuroCom VSR portable force platform (Natus, San Carlos, CA). OBJECTIVE: To assess the test-retest reliability and practice effects of the SET protocol. DESIGN: Cohort. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: 50 healthy adults (20 men, 30 women, age 25.30 ± 3.60 y, height 166.60± 12.80 cm, mass 68.80 ± 13.90 kg). INTERVENTIONS: All participants completed 4 trials of the SET. Each trial consisted of six 20-s balance tests with eyes closed, under the following conditions: double-leg firm (DFi), single-leg firm (SFi), tandem firm (TFi), double-leg foam (DFo), single-leg foam (SFo), and tandem foam (TFo). Each trial was separated by a 5-min seated rest period. MAIN OUTCOME MEASURES: The dependent variable was sway velocity (deg/s), with lower values indicating better balance. Sway velocity was recorded for each of the 6 conditions as well as a composite score for each trial. Test-retest reliability was analyzed across 4 trials with intraclass correlation coefficients (ICCs). Practice effects analyzed with repeated measures analysis of variance, followed by Tukey post hoc comparisons for any significant main effects (P < .05). RESULTS: Sway-velocity reliability values were good to excellent: DFi (ICC = .88; 95%CI: .81, .92), SFi (ICC = .75; 95%CI: .61, .85), TFi (ICC = .84; 95%CI: .75, .90), DFo (ICC = .83; 95%CI: .74, .90), SFo (ICC = .82; 95%CI: .72, .89), TFo (ICC = .81; 95%CI: .69, .88), and composite score (ICC = .93; 95%CI: .88, .95). Significant practice effects (P < .05) were noted on the SFi, DFo, SFo, TFo conditions and composite scores. CONCLUSIONS: Our results suggest the SET has good to excellent reliability for the assessment of postural control in healthy adults. Due to the practice effects noted, a familiarization session is recommended (ie, all 6 conditions) before data are recorded. Future studies should evaluate injured patients to determine meaningful change scores during various injuries.

16.
Proc Natl Acad Sci U S A ; 109(47): 19161-5, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23115333

RESUMEN

Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.


Asunto(s)
Fenómenos Ópticos , Rutenio/química , Compuestos de Silicona/química , Uranio/química , Conductividad Eléctrica , Análisis Espectral , Temperatura
18.
Proc Natl Acad Sci U S A ; 108(45): 18233-7, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22006302

RESUMEN

Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a "Kondo-hole". No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559-12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857-6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu(2)Si(2). At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the "hybridization gapmap" technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping.

19.
Polyhedron ; 84: 24-31, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25435645

RESUMEN

Rhodium(I) and Iridium(I) borate complexes of the structure [Me2B(2-py)2]ML2 (L2 = (tBuNC)2, (CO)2, (C2H4)2, cod, dppe) were prepared and structurally characterized (cod = 1,5-cyclooctadiene; dppe = 1,2-diphenylphosphinoethane). Each contains a boat-configured chelate ring that participates in a boat-to-boat ring flip. Computational evidence shows that the ring flip proceeds through a transition state that is near planarity about the chelate ring. We observe an empirical, quantitative correlation between the barrier of this ring flip and the π acceptor ability of the ancillary ligand groups on the metal. The ring flip barrier correlates weakly to the Tolman and Lever ligand parameterization schemes, apparently because these combine both σ and π effects while we propose that the ring flip barrier is dominated by π bonding. This observation is consistent with metal-ligand π interactions becoming temporarily available only in the near-planar transition state of the chelate ring flip and not the boat-configured ground state. Thus, this is a first-of-class observation of metal-ligand π bonding governing conformational dynamics.

20.
J Fluor Chem ; 168: 177-183, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25431503

RESUMEN

Responsive magnetic resonance imaging (MRI) contrast agents, those that change their relaxivity according to environmental stimuli, have promise as next generation imaging probes in medicine. While several of these are known based on covalent modification of the contrast agents, fewer are known based on controlling non-covalent interactions. We demonstrate here accentuated relaxivity of a T1-shortening contrast agent, Gd-DOTP5- based on non-covalent, hydrogen bonding of Gd-DOTP5- with a novel fluorous amphiphile. By contrast to the phosphonate-containing Gd-DOTP5- system, the relaxivity of the analogous clinically approved contrast agent, Gd-DOTA- is unaffected by the same fluorous amphiphile under similar conditions. Mechanistic studies show that placing the fluorous amphiphile in proximity of the gadolinium center in Gd-DOTP5- caused an increase in τ m (bound-water residence lifetime or the inverse of water exchange rate, τ m = 1/kex) and an increase in τ R (rotational correlation time), with τ R being the factor driving enhanced relaxivity. Further, these effects were not observed when Gd-DOTA- was treated with the same fluorous amphiphile. Thus, Gd-DOTP5- and Gd-DOTA- respond to the fluorous amphiphile differently, presumably because the former binds to the amphiphile with higher affinity. (DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraphosphonic acid; DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA