RESUMEN
Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing.
Asunto(s)
Composición de Base , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Hibridación de Ácido Nucleico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Genoma Humano , Reproducibilidad de los ResultadosRESUMEN
The identification of gene fusions in rare sarcoma subtypes can have diagnostic, prognostic, and therapeutic impacts for advanced cancer patients. Here, we present a case of a 31-year-old male with a lytic lesion of the left mandible initially diagnosed as an osteosarcoma but found to have a TFCP2 fusion and ALK alteration, redefining the diagnosis and providing rationale for a novel treatment strategy. Histologically, the tumor displayed hypercellular, spindled to epithelioid neoplasm and nuclear pleomorphism, while immunohistochemistry showed diffuse SATB2 and focal desmin staining. Whole genome and transcriptome analysis revealed a FUS::TFCP2 fusion, the defining alteration of a rare molecularly characterized subtype of soft tissue sarcoma termed intraosseous rhabdomyosarcoma. An internal ALK deletion and extremely high ALK RNA expression were also identified, suggesting potential benefit of an ALK inhibitor. This patient displayed a rapid and dramatic clinical and radiographic response to an ALK inhibitor, alectinib. Unfortunately, the response was short-lived, likely due to the advanced stage and aggressiveness of the disease. This report describes genome and transcriptome characterization of an intraosseous rhabdomyosarcoma, few of which exist in the literature, as well as providing evidence that inhibition of ALK may be a rational treatment strategy for patients with this exceedingly rare soft tissue sarcoma subtype characterized by TFCP2 fusions and ALK activation.
Asunto(s)
Quinasa de Linfoma Anaplásico , Proteínas de Fusión Oncogénica , Proteína FUS de Unión a ARN , Rabdomiosarcoma , Factores de Transcripción , Humanos , Masculino , Quinasa de Linfoma Anaplásico/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Rabdomiosarcoma/tratamiento farmacológico , Adulto , Proteína FUS de Unión a ARN/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
Molybdenum nitrogenase catalyzes the reduction of dinitrogen into ammonia, which requires the coordinated transfer of eight electrons to the active site cofactor (FeMoco) through the intermediacy of an [8Fe-7S] cluster (P-cluster), both housed in the molybdenum-iron protein (MoFeP). Previous studies on MoFeP from two different organisms, Azotobacter vinelandii ( Av) and Gluconacetobacter diazotrophicus ( Gd), have established that the P-cluster is conformationally flexible and can undergo substantial structural changes upon two-electron oxidation to the POX state, whereby a backbone amidate and an oxygenic residue (Ser or Tyr) ligate to two of the cluster's Fe centers. This redox-dependent change in coordination has been implicated in the conformationally gated electron transfer in nitrogenase. Here, we have investigated the role of the oxygenic ligand in Av MoFeP, which natively contains a Ser ligand (ßSer188) to the P-cluster. Three variants were generated in which (1) the oxygenic ligand was eliminated (ßSer188Ala), (2) the P-cluster environment was converted to the one in Gd MoFeP (ßPhe99Tyr/ßSer188Ala), and (3) two oxygenic ligands were simultaneously included (ßPhe99Tyr). Our studies have revealed that the P-cluster can become compositionally labile upon oxidation and reversibly lose one or two Fe centers in the absence of the oxygenic ligand, while still retaining wild-type-like dinitrogen reduction activity. Our findings also suggest that Av and Gd MoFePs evolved with specific preferences for Ser and Tyr ligands, respectively, and that the structural control of these ligands must extend beyond the primary and secondary coordination spheres of the P-cluster. The P-cluster adds to the increasing number of examples of inherently labile Fe-S clusters whose compositional instability may be an obligatory feature to enable redox-linked conformational changes to facilitate multielectron redox reactions.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Nitrogenasa/química , Azotobacter vinelandii/enzimología , Proteínas Bacterianas/genética , Gluconacetobacter/enzimología , Proteínas Hierro-Azufre/genética , Mutación , Nitrogenasa/genética , Oxidación-Reducción , Conformación Proteica , Estabilidad Proteica , Serina/química , Tirosina/químicaRESUMEN
Despite significant progress in protein design, the construction of protein assemblies that display complex functions (e.g., catalysis or allostery) remains a significant challenge. We recently reported the de novo construction of an allosteric supramolecular protein assembly (Zn-C38/C81/C96R14) in which the dissociation and binding of ZnII ions were coupled over a distance of 15 Å to the selective hydrolytic breakage and formation of a single disulfide bond. Zn-C38/C81/C96R14 was constructed by ZnII-templated assembly of a monomeric protein (R1, a derivative of cytochrome cb562) into a tetramer, followed by progressive incorporation of noncovalent and disulfide bonding interactions into the protein-protein interfaces to create a strained quaternary architecture. The interfacial strain thus built allowed mechanical coupling between the binding/dissociation of ZnII and formation/hydrolysis of a single disulfide bond (C38-C38) out of a possible six. While the earlier study provided structural evidence for the two end-states of allosteric coupling, the energetic basis for allosteric coupling and the minimal structural requirements for building this allosteric system were not understood. Toward this end, we have characterized the structures and Zn-binding properties of two related protein constructs (C38/C96R1 and C38R1) which also possess C38-C38 disulfide bonds. In addition, we have carried out extensive molecular dynamics simulations of C38/C81/C96R14 to understand the energetic basis for the selective cleavage of the C38-C38 disulfide bond upon ZnII dissociation. Our analyses reveal that the local interfacial environment around the C38-C38 bond is key to its selective cleavage, but this cleavage is only possible within the context of a stable quaternary architecture which enables structural coupling between ZnII coordination and the protein-protein interfaces.
Asunto(s)
Metaloproteínas/química , Regulación Alostérica , Disulfuros/química , Hidrólisis , Conformación Proteica , Zinc/químicaRESUMEN
Immune checkpoint inhibitors (ICIs) are increasingly used in the treatment of many tumor types, and durable responses can be observed in select populations. However, patients may exhibit significant immune-related adverse events (irAEs) that may lead to morbidity. There is limited information on whether the presence of specific germline mutations may highlight those at elevated risk of irAEs. We evaluated 117 patients with metastatic solid tumors or hematologic malignancies who underwent genomic analysis through the ongoing Personalized OncoGenomics (POG) program at BC Cancer and received an ICI during their treatment history. Charts were reviewed for irAEs. Whole genome sequencing of a fresh biopsy and matched normal specimens (blood) was performed at the time of POG enrollment. Notably, we found that MHC class I alleles in the HLA-B27 family, which have been previously associated with autoimmune conditions, were associated with grade 3 hepatitis and pneumonitis (q = 0.007) in patients treated with combination PD-1/PD-L1 and CTLA-4 inhibitors, and PD-1 inhibitors in combination with IDO-1 inhibitors. These data highlight that some patients may have a genetic predisposition to developing irAEs.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Neoplasias/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Anciano , Mutación de Línea Germinal , Adulto , Anciano de 80 o más AñosRESUMEN
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine and is available as a resource for developing analytical approaches using this technology.
RESUMEN
The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.
Asunto(s)
Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica , Neoplasias , Humanos , Niño , Neoplasias/genética , Neoplasias/terapia , Femenino , Adolescente , Masculino , Preescolar , Pronóstico , Perfilación de la Expresión Génica/métodos , Lactante , Transcriptoma , Adulto Joven , Secuenciación Completa del Genoma , Mutación de Línea Germinal , Mutación , Genoma Humano/genética , Predisposición Genética a la EnfermedadRESUMEN
Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Scorehi) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment.
RESUMEN
There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.
RESUMEN
Zipper-interacting protein kinase (ZIPK) has been implicated in Ca(2+)-independent smooth muscle contraction, although its specific role is unknown. The addition of ZIPK to demembranated rat caudal arterial strips induced an increase in force, which correlated with increases in LC(20) and MYPT1 phosphorylation. However, because of the number of kinases capable of phosphorylating LC(20) and MYPT1, it has proven difficult to identify the mechanism underlying ZIPK action. Therefore, we set out to identify bona fide ZIPK substrates using a chemical genetics method that takes advantage of ATP analogs with bulky substituents at the N(6) position and an engineered ZIPK capable of utilizing such substrates. (32)P-Labeled 6-phenyl-ATP and ZIPK-L93G mutant protein were added to permeabilized rat caudal arterial strips, and substrate proteins were detected by autoradiography following SDS-PAGE. Mass spectrometry identified LC(20) as a direct target of ZIPK in situ for the first time. Tissues were also exposed to 6-phenyl-ATP and ZIPK-L93G in the absence of endogenous ATP, and putative ZIPK substrates were identified by Western blotting. LC(20) was thereby confirmed as a direct target of ZIPK; however, no phosphorylation of MYPT1 was detected. We conclude that ZIPK is involved in the regulation of smooth muscle contraction through direct phosphorylation of LC(20).
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Arterias/enzimología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Contracción Muscular/fisiología , Músculo Liso Vascular/enzimología , Cadenas Ligeras de Miosina/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Sustitución de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Asociadas a Muerte Celular , Masculino , Mutación Missense , Cadenas Ligeras de Miosina/genética , Fosforilación/fisiología , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Adrenocortical cancer (ACC) is a rare cancer of the adrenal gland. Several driver mutations have been identified in both primary and metastatic ACCs, but the therapeutic options are still limited. We performed whole-genome and transcriptome sequencing on seven patients with metastatic ACC. Integrative analysis of mutations, RNA expression changes, mutation signature, and homologous recombination deficiency (HRD) analysis was performed. Mutations affecting CTNNB1 and TP53 and frequent loss of heterozygosity (LOH) events were observed in our cohort. Alterations affecting genes involved in cell cycle (RB1, CDKN2A, CDKN2B), DNA repair pathways (MUTYH, BRCA2, ATM, RAD52, MLH1, MSH6), and telomere maintenance (TERF2 and TERT) consisting of somatic and germline mutations, structural variants, and expression outliers were also observed. HRDetect, which aggregates six HRD-associated mutation signatures, identified a subset of cases as HRD. Genomic alterations affecting genes involved in epigenetic regulation were also identified, including structural variants (SWI/SNF genes and histone methyltransferases), and copy gains and concurrent high expression of KDM5A, which may contribute to epigenomic deregulation. Findings from this study highlight HRD and epigenomic pathways as potential therapeutic targets and suggest a subgroup of patients may benefit from a diverse array of molecularly targeted therapies in ACC, a rare disease in urgent need of therapeutic strategies.
Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Neoplasias de la Corteza Suprarrenal/genética , Carcinoma Corticosuprarrenal/genética , Reparación del ADN/genética , Epigénesis Genética , Epigenoma , Perfilación de la Expresión Génica , Humanos , Proteína 2 de Unión a Retinoblastoma/genéticaRESUMEN
BACKGROUND: Tumor mutation burden (TMB) is a key characteristic used in a tumor-type agnostic context to inform the use of immune checkpoint inhibitors (ICI). Accurate and consistent measurement of TMB is crucial as it can significantly impact patient selection for therapy and clinical trials, with a threshold of 10 mutations/Mb commonly used as an inclusion criterion. Studies have shown that the most significant contributor to variability in mutation counts in whole genome sequence (WGS) data is differences in analysis methods, even more than differences in extraction or library construction methods. Therefore, tools for improving consistency in whole genome TMB estimation are of clinical importance. METHODS: We developed a distributable TMB analysis suite, TMBur, to address the need for genomic TMB estimate consistency in projects that span jurisdictions. TMBur is implemented in Nextflow and performs all analysis steps to generate TMB estimates directly from fastq files, incorporating somatic variant calling with Manta, Strelka2, and Mutect2, and microsatellite instability profiling with MSISensor. These tools are provided in a Singularity container downloaded by the workflow at runtime, allowing the entire workflow to be run identically on most computing platforms. To test the reproducibility of TMBur TMB estimates, we performed replicate runs on WGS data derived from the COLO829 and COLO829BL cell lines at multiple research centres. The clinical value of derived TMB estimates was then evaluated using a cohort of 90 patients with advanced, metastatic cancer that received ICIs following WGS analysis. Patients were split into groups based on a threshold of 10/Mb, and time to progression from initiation of ICIs was examined using Kaplan-Meier and cox-proportional hazards analyses. RESULTS: TMBur produced identical TMB estimates across replicates and at multiple analysis centres. The clinical utility of TMBur-derived TMB estimates were validated, with a genomic TMB ≥ 10/Mb demonstrating improved time to progression, even after correcting for differences in tumor type (HR = 0.39, p = 0.012). CONCLUSIONS: TMBur, a shareable workflow, generates consistent whole genome derived TMB estimates predictive of response to ICIs across multiple analysis centres. Reproducible TMB estimates from this approach can improve collaboration and ensure equitable treatment and clinical trial access spanning jurisdictions.
Asunto(s)
Biomarcadores de Tumor/genética , Mutación , Neoplasias/genética , Secuenciación Completa del Genoma/métodos , Humanos , Estimación de Kaplan-Meier , Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Neoplasias/metabolismo , Neoplasias/terapia , Selección de Paciente , Modelos de Riesgos Proporcionales , Reproducibilidad de los ResultadosRESUMEN
Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events.
Asunto(s)
Adenocarcinoma , Neoplasias de los Conductos Biliares , Carcinoma Ductal Pancreático , Colangiocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patología , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Carcinoma Ductal Pancreático/patología , Colangiocarcinoma/genética , Humanos , Mutación , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Neoplasias PancreáticasRESUMEN
Manual interpretation of variants remains rate limiting in precision oncology. The increasing scale and complexity of molecular data generated from comprehensive sequencing of cancer samples requires advanced interpretative platforms as precision oncology expands beyond individual patients to entire populations. To address this unmet need, we introduce a Platform for Oncogenomic Reporting and Interpretation (PORI), comprising an analytic framework that facilitates the interpretation and reporting of somatic variants in cancer. PORI integrates reporting and graph knowledge base tools combined with support for manual curation at the reporting stage. PORI represents an open-source platform alternative to commercial reporting solutions suitable for comprehensive genomic data sets in precision oncology. We demonstrate the utility of PORI by matching 9,961 pan-cancer genome atlas tumours to the graph knowledge base, calculating therapeutically informative alterations, and making available reports describing select individual samples.
Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , Biomarcadores de Tumor , Bases de Datos Genéticas , Variación Genética , Genómica , Humanos , Bases del Conocimiento , Medicina de PrecisiónRESUMEN
Prolonged exposure to estrogen increases breast cancer risk. Estrogen is known to induce chromosomal aberrations, yet the mechanisms by which estrogen promotes genomic instability are not fully understood. Here, we show that exposure of MCF-7 cells to 17ß-estradiol (E2) induces DNA double-strand breaks (DSBs), as determined by the formation of γH2AX foci. Foci formation was dependent upon estrogen receptor-α (ERα) and the catalytic activity of the type II topoisomerase, topoisomerase IIß (topoIIß). Moreover, we show by chromatin immunoprecipitation that topoIIß-dependent E2-induced γH2AX localizes to the promoter of the estrogen-inducible gene, trefoil factor 1. E2-induced foci were associated with cyclin A expression and inhibited by pre-incubation with the DNA polymerase inhibitor aphidicolin suggesting that E2-induced DSBs are mediated by progression through S phase. Furthermore, E2-induced γH2AX foci colocalized with Rad51, suggesting that E2-induced DSBs are repaired by homologous recombination. We propose that DNA DSBs formed by the strand-cleaving activity of the topoIIß-DNA cleavage complex at estrogen-inducible genes can present a barrier to DNA replication, leading to persistent DNA DSBs in ERα-positive breast cancer cells.
Asunto(s)
Neoplasias de la Mama/genética , Ciclo Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Receptor alfa de Estrógeno/metabolismo , Histonas/genética , Transcripción Genética , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Replicación del ADN/efectos de la radiación , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Técnica del Anticuerpo Fluorescente , Histonas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Radiación Ionizante , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Poorly differentiated chordoma (PDC) is a recently recognized subtype of chordoma characterized by expression of the embryonic transcription factor, brachyury, and loss of INI1. PDC primarily affects children and is associated with a poor prognosis and limited treatment options. Here we describe the molecular and immune tumour microenvironment profiles of two paediatric PDCs produced using whole-genome, transcriptome and whole-genome bisulfite sequencing (WGBS) and multiplex immunohistochemistry. Our analyses revealed the presence of tumour-associated immune cells, including CD8+ T cells, and expression of the immune checkpoint protein, PD-L1, in both patient samples. Molecular profiling provided the rationale for immune checkpoint inhibitor (ICI) therapy, which resulted in a clinical and radiographic response. A dominant T cell receptor (TCR) clone specific for a brachyury peptide-MHC complex was identified from bulk RNA sequencing, suggesting that targeting of the brachyury tumour antigen by tumour-associated T cells may underlie this clinical response to ICI. Correlative analysis with rhabdoid tumours, another INI1-deficient paediatric malignancy, suggests that a subset of tumours may share common immune phenotypes, indicating the potential for a therapeutically targetable subgroup of challenging paediatric cancers.
RESUMEN
PURPOSE: Immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid tumors with dramatic and durable responses seen across multiple tumor types. However, identifying patients who will respond to these drugs remains challenging, particularly in the context of advanced and previously treated cancers. EXPERIMENTAL DESIGN: We characterized fresh tumor biopsies from a heterogeneous pan-cancer cohort of 98 patients with metastatic predominantly pretreated disease through the Personalized OncoGenomics program at BC Cancer (Vancouver, Canada) using whole genome and transcriptome analysis (WGTA). Baseline characteristics and follow-up data were collected retrospectively. RESULTS: We found that tumor mutation burden, independent of mismatch repair status, was the most predictive marker of time to progression (P = 0.007), but immune-related CD8+ T-cell and M1-M2 macrophage ratio scores were more predictive for overall survival (OS; P = 0.0014 and 0.0012, respectively). While CD274 [programmed death-ligand 1 (PD-L1)] gene expression is comparable with protein levels detected by IHC, we did not observe a clinical benefit for patients with this marker. We demonstrate that a combination of markers based on WGTA provides the best stratification of patients (P = 0.00071, OS), and also present a case study of possible acquired resistance to pembrolizumab in a patient with non-small cell lung cancer. CONCLUSIONS: Interpreting the tumor-immune interface to predict ICI efficacy remains challenging. WGTA allows for identification of multiple biomarkers simultaneously that in combination may help to identify responders, particularly in the context of a heterogeneous population of advanced and previously treated cancers, thus precluding tumor type-specific testing.
Asunto(s)
Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Canadá , Toma de Decisiones Clínicas , Femenino , Estudios de Seguimiento , Pruebas Genéticas/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/mortalidad , Selección de Paciente , Medicina de Precisión/métodos , Resultado del Tratamiento , Microambiente Tumoral/genética , Microambiente Tumoral/inmunologíaRESUMEN
PURPOSE: With the rising incidence of early-onset pancreatic cancer (EOPC), molecular characteristics that distinguish early-onset pancreatic ductal adenocarcinoma (PDAC) tumors from those arising at a later age are not well understood. EXPERIMENTAL DESIGN: We performed bioinformatic analysis of genomic and transcriptomic data generated from 269 advanced (metastatic or locally advanced) and 277 resectable PDAC tumor samples. Patient samples were stratified into EOPC (age of onset ≤55 years; n = 117), intermediate (age of onset 55-70 years; n = 264), and average (age of onset ≥70 years; n = 165) groups. Frequency of somatic mutations affecting genes commonly implicated in PDAC, as well as gene expression patterns, were compared between EOPC and all other groups. RESULTS: EOPC tumors showed significantly lower frequency of somatic single-nucleotide variant (SNV)/insertions/deletions (indel) in CDKN2A (P = 0.0017), and were more likely to achieve biallelic mutation of CDKN2A through homozygous copy loss as opposed to heterozygous copy loss coupled with a loss-of-function SNV/indel mutation, the latter of which was more common for tumors with later ages of onset (P = 1.5e-4). Transcription factor forkhead box protein C2 (FOXC2) was significantly upregulated in EOPC tumors (P = 0.032). Genes significantly correlated with FOXC2 in PDAC samples were enriched for gene sets related to epithelial-to-mesenchymal transition (EMT) and included VIM (P = 1.8e-8), CDH11 (P = 6.5e-5), and CDH2 (P = 2.4e-2). CONCLUSIONS: Our comprehensive analysis of sequencing data generated from a large cohort of PDAC patient samples highlights a distinctive pattern of biallelic CDKN2A mutation in EOPC tumors. Increased expression of FOXC2 in EOPC, with the correlation between FOXC2 and EMT pathways, represents novel molecular characteristics of EOPC.See related commentary by Lou, p. 8.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anciano , Carcinoma Ductal Pancreático/genética , Transición Epitelial-Mesenquimal , Genómica , Humanos , Persona de Mediana Edad , Neoplasias Pancreáticas/genéticaRESUMEN
PURPOSE: RNA-sequencing-based subtyping of pancreatic ductal adenocarcinoma (PDAC) has been reported by multiple research groups, each using different methodologies and patient cohorts. "Classical" and "basal-like" PDAC subtypes are associated with survival differences, with basal-like tumors associated with worse prognosis. We amalgamated various PDAC subtyping tools to evaluate the potential of such tools to be reliable in clinical practice. EXPERIMENTAL DESIGN: Sequencing data for 574 PDAC tumors was obtained from prospective trials and retrospective public databases. Six published PDAC subtyping strategies (Moffitt regression tools, clustering-based Moffitt, Collisson, Bailey, and Karasinska subtypes) were used on each sample, and results were tested for subtype call consistency and association with survival. RESULTS: Basal-like and classical subtype calls were concordant in 88% of patient samples, and survival outcomes were significantly different (P < 0.05) between prognostic subtypes. Twelve percent of tumors had subtype-discordant calls across the different methods, showing intermediate survival in univariate and multivariate survival analyses. Transcriptional profiles compatible with that of a hybrid subtype signature were observed for subtype-discordant tumors, in which classical and basal-like genes were concomitantly expressed. Subtype-discordant tumors showed intermediate molecular characteristics, including subtyping gene expression (P < 0.0001) and mutant KRAS allelic imbalance (P < 0.001). CONCLUSIONS: Nearly 1 in 6 patients with PDAC have tumors that fail to reliably fall into the classical or basal-like PDAC subtype categories, based on two regression tools aimed toward clinical practice. Rather, these patient tumors show intermediate prognostic and molecular traits. We propose close consideration of the non-binary nature of PDAC subtypes for future incorporation of subtyping into clinical practice.
Asunto(s)
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Estudios Prospectivos , RNA-Seq , Estudios Retrospectivos , Análisis de SupervivenciaRESUMEN
PURPOSE: Gene fusions are important oncogenic drivers and many are actionable. Whole-genome and transcriptome (WGS and RNA-seq, respectively) sequencing can discover novel clinically relevant fusions. EXPERIMENTAL DESIGN: Using WGS and RNA-seq, we reviewed the prevalence of fusions in a cohort of 570 patients with cancer, and compared prevalence to that predicted with commercially available panels. Fusions were annotated using a consensus variant calling pipeline (MAVIS) and required that a contig of the breakpoint could be constructed and supported from ≥2 structural variant detection approaches. RESULTS: In 570 patients with advanced cancer, MAVIS identified 81 recurrent fusions by WGS and 111 by RNA-seq, of which 18 fusions by WGS and 19 by RNA-seq were noted in at least 3 separate patients. The most common fusions were EML4-ALK in thoracic malignancies (9/69, 13%), and CMTM8-CMTM7 in colorectal cancer (4/73, 5.5%). Combined genomic and transcriptomic analysis identified novel fusion partners for clinically relevant genes, such as NTRK2 (novel partners: SHC3, DAPK1), and NTRK3 (novel partners: POLG, PIBF1). CONCLUSIONS: Utilizing WGS/RNA-seq facilitates identification of novel fusions in clinically relevant genes, and detected a greater proportion than commercially available panels are expected to find. A significant benefit of WGS and RNA-seq is the innate ability to retrospectively identify variants that becomes clinically relevant over time, without the need for additional testing, which is not possible with panel-based approaches.