RESUMEN
Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, â¼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.
Asunto(s)
Tejido Adiposo Pardo/fisiología , Mioglobina/fisiología , Adipocitos Marrones/fisiología , Tejido Adiposo Pardo/química , Tejido Adiposo Pardo/ultraestructura , Animales , Diferenciación Celular , Células Cultivadas , Dieta Alta en Grasa , Complejo IV de Transporte de Electrones/genética , Femenino , Expresión Génica , Lípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/fisiología , Mioglobina/deficiencia , Mioglobina/genética , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , ARN Mensajero/análisisRESUMEN
Myoglobin (Mb) is a regulator of O2 bioavailability in type I muscle and heart, at least when tissue O2 levels drop. Mb also plays a role in regulating cellular nitric oxide (NO) pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggest additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance, and insulin sensitivity in Mb knockout (Mb-/-) and wild-type (WT) mice challenged with a high-fat diet (HFD, 45% of calories). In males (n = 10/genotype) and females (n = 9/genotype) tested at 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10°C, 72 h), and glucose and insulin tolerance, were not different compared with within-sex WT controls. At â¼18 and â¼19 wk of age, female Mb-/- adiposity was â¼42%-48% higher versus WT females (P = 0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb-/-, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb-/- mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency.NEW & NOTEWORTHY The roles of myoglobin remain to be elaborated. We address sexual dimorphism in terms of outcomes in response to the loss of myoglobin in knockout mice and perform, for the first time, a series of comprehensive metabolic studies under conditions in which fat is mobilized (high-fat diet, cold). The results highlight that myoglobin is not necessary and sufficient for maintaining oxidative metabolism and point to alternative roles for this protein in muscle and heart.
Asunto(s)
Músculo Esquelético/metabolismo , Miocardio/metabolismo , Mioglobina/fisiología , Adiposidad , Animales , Peso Corporal , Dieta Alta en Grasa , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Mioglobina/deficiencia , Mioglobina/genética , Oxidación-Reducción , Fenotipo , Caracteres SexualesRESUMEN
Successful production of genetically modified mouse lines is dependent on germline transmission (GLT) of mutant alleles from chimeras. When natural mating fails to achieve GLT due to male infertility, sickness, or other problems, sperm can be harvested from chimeras and used for assisted reproductive technologies such as in vitro fertilization (IVF) to attempt to "rescue" GLT. However, a rational, evidence-based approach to determine if such extraordinary efforts should be attempted on a chimera has not been established. Therefore, in the present study we assessed the production, quality and genotype of epididymal sperm harvested from male chimeras generated by blastocyst or morula microinjection of gene targeted embryonic stem (ES) cell clones containing a LacZ expression cassette and that failed to achieve GLT. Results of this analysis enabled us to determine the cause of GLT failure, correlate coat color chimerism with the proportion of LacZ-positive sperm, and test the likelihood of achieving GLT by IVF. In 415 chimeras, 332 (80%) produced no offspring by natural mating ("infertile"), while 83 (20%) produced only wildtype offspring ("fertile"). Of the 332 infertile chimeras, 209 (63%) failed to produce any sperm whatsoever, 48 (15%) had extremely poor quality sperm, and 75 (23%) had good quality sperm. These results indicate that most chimeras that do not achieve GLT by natural mating are infertile, and the primary cause of infertility is failed spermatogenesis. Genotyping of sperm from 519 chimeras revealed a significant positive linear correlation between coat color chimerism and mean percentage of LacZ-positive sperm (R(2) = 0.95). Finally, IVF using good quality, LacZ-positive sperm from fertile and infertile chimeras "rescued" GLT for 19 out of 56 genes. We conclude that an assessment of coat color chimerism together with sperm quality and genotype can better inform the selection of chimeras for IVF to rescue GLT than coat color chimerism alone.
Asunto(s)
Quimera/genética , Células Germinativas , Espermatogénesis , Espermatozoides , Animales , Animales Modificados Genéticamente , Embrión de Mamíferos , Células Madre Embrionarias , Fertilización In Vitro , Genotipo , Masculino , RatonesRESUMEN
The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps - generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease.
Asunto(s)
Edición Génica , Genes Esenciales , Ratones Noqueados , Animales , Ratones , Edición Génica/métodos , Sistemas CRISPR-Cas , Alelos , Ratones Endogámicos C57BL , Masculino , Femenino , Ingeniería Genética/métodos , FenotipoRESUMEN
Genome editing with CRISPR-associated (Cas) proteins holds exceptional promise for "correcting" variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S. pyogenes Cas9-induced off-target mutagenesis. Computational analysis of whole-genome sequencing data detects 26 unique sequence variants at 23 predicted off-target sites for 18/163 guides used. While computationally detected variants are identified in 30% (15/50) of Cas9 gene-edited founder animals, only 38% (10/26) of the variants in 8/15 founders validate by Sanger sequencing. In vitro assays for Cas9 off-target activity identify only two unpredicted off-target sites present in genome sequencing data. In total, only 4.9% (8/163) of guides tested have detectable off-target activity, a rate of 0.2 Cas9 off-target mutations per founder analyzed. In comparison, we observe ~1,100 unique variants in each mouse regardless of genome exposure to Cas9 indicating off-target variants comprise a small fraction of genetic heterogeneity in Cas9-edited mice. These findings will inform future design and use of Cas9-edited animal models as well as provide context for evaluating off-target potential in genetically diverse patient populations.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Genoma , Mutación , MutagénesisRESUMEN
BACKGROUND: Desminopathy is a clinically heterogeneous muscle disease caused by over 60 different mutations in desmin. The most common mutation with a clinical phenotype in humans is an exchange of arginine to proline at position 350 of desmin leading to p.R350P. We created the first CRISPR-Cas9 engineered rat model for a muscle disease by mirroring the R350P mutation in humans. METHODS: Using CRISPR-Cas9 technology, Des c.1045-1046 (AGG > CCG) was introduced into exon 6 of the rat genome causing p.R349P. The genotype of each animal was confirmed via quantitative PCR. Six male rats with a mutation in desmin (n = 6) between the age of 120-150 days and an equal number of wild type littermates (n = 6) were used for experiments. Maximal plantar flexion force was measured in vivo and combined with the collection of muscle weights, immunoblotting, and histological analysis. In addition to the baseline phenotyping, we performed a synergist ablation study in the same animals. RESULTS: We found a difference in the number of central nuclei between desmin mutants (1 ± 0.4%) and wild type littermates (0.2 ± 0.1%; P < 0.05). While muscle weights did not differ, we found the levels of many structural proteins to be altered in mutant animals. Dystrophin and syntrophin were increased 54% and 45% in desmin mutants, respectively (P < 0.05). Dysferlin and Annexin A2, proteins associated with membrane repair, were increased two-fold and 32%, respectively, in mutants (P < 0.05). Synergist ablation caused similar increases in muscle weight between mutant and wild type animals, but changes in fibre diameter revealed that fibre hypertrophy in desmin mutants was hampered compared with wild type animals (P < 0.05). CONCLUSIONS: We created a novel animal model for desminopathy that will be a useful tool in furthering our understanding of the disease. While mutant animals at an age corresponding to a preclinical age in humans show no macroscopic differences, microscopic and molecular changes are already present. Future studies should aim to further decipher those biological changes that precede the clinical progression of disease and test therapeutic approaches to delay disease progression.
Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Musculares , Animales , Desmina/genética , Desmina/metabolismo , Distrofina , Masculino , Ratones , Enfermedades Musculares/genética , Mutación , RatasRESUMEN
Although the derivation of mice by intracytoplasmic sperm injection (ICSI) using freeze-dried sperm has been demonstrated previously, a comprehensive analysis of their viability, health, and fertility has not. The purpose of the present study was to determine the extent to which ICSI using freeze-dried sperm stored at 4 degrees C for 1-2 months from mice on either an inbred (C57BL/6J) or hybrid (B6D2F1/J) genetic background results in genomic instability and/or phenotypic abnormality in mice and two generations of their progeny. Fertilization rates (number of 2-cells per injected oocytes) using ICSI of fresh and freeze-dried sperm were similar within and between mouse strains, although fewer freeze-dried sperm-derived embryos than fresh sperm-derived embryos developed to blastocysts in vitro (C57BL/6J and B6D2F1/J) and liveborn pups in vivo (B6D2F1/J only). Nevertheless, once born, mice derived by ICSI using freeze-dried sperm in both mouse strains were healthy and reproductively sound. No major differences in litter size, weaning rate, and sex ratio were noted in the two generations of progeny (F2 and F3) of ICSI-derived offspring using freeze-dried sperm compared with that in the natural mating (control) group. Further, there was no evidence that either ICSI or freeze drying induced genomic instability, as determined by microsatellite analysis of the derived mice and subsequent generations when compared with both parental genotypes, nor were there differences in the number or types of pathological changes in any of the three generations of progeny. We conclude that viable, healthy and genomically stable mice can be derived by ICSI using freeze-dried mouse sperm stored in the refrigerator for at least 2 months. Further, because freeze drying is a simpler and more economical technique compared with embryo and sperm cryopreservation, the results of this study justify additional research to continue to develop and enhance the technique for the preservation, storage, and sharing of genetically altered mice.
Asunto(s)
Liofilización/métodos , Oocitos/fisiología , Preservación de Semen/métodos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Espermatozoides/fisiología , Animales , Blastocisto/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Inestabilidad de MicrosatélitesRESUMEN
CRISPR/Cas9 technology has transformed mouse genome editing with unprecedented precision, efficiency, and ease; however, the current practice of microinjecting CRISPR reagents into pronuclear-stage embryos remains rate-limiting. We thus developed CRISPR ribonucleoprotein (RNP) electroporation of zygotes (CRISPR-EZ), an electroporation-based technology that outperforms pronuclear and cytoplasmic microinjection in efficiency, simplicity, cost, and throughput. In C57BL/6J and C57BL/6N mouse strains, CRISPR-EZ achieves 100% delivery of Cas9/single-guide RNA (sgRNA) RNPs, facilitating indel mutations (insertions or deletions), exon deletions, point mutations, and small insertions. In a side-by-side comparison in the high-throughput KnockOut Mouse Project (KOMP) pipeline, CRISPR-EZ consistently outperformed microinjection. Here, we provide an optimized protocol covering sgRNA synthesis, embryo collection, RNP electroporation, mouse generation, and genotyping strategies. Using CRISPR-EZ, a graduate-level researcher with basic embryo-manipulation skills can obtain genetically modified mice in 6 weeks. Altogether, CRISPR-EZ is a simple, economic, efficient, and high-throughput technology that is potentially applicable to other mammalian species.
Asunto(s)
Electroporación/métodos , Edición Génica/métodos , Cigoto , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microinyecciones/métodosRESUMEN
Female 129:Stat1-null mice (129S6/SvEvTac-Stat1(tm1Rds) homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment.