Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R25-R34, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682243

RESUMEN

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.


Asunto(s)
Altitud , Estudios Cruzados , Ejercicio Físico , Glucosa , Hipoglucemiantes , Oxidación-Reducción , Pioglitazona , Humanos , Pioglitazona/administración & dosificación , Pioglitazona/farmacología , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Adulto , Glucosa/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/farmacocinética , Tasa de Depuración Metabólica , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo
2.
Physiol Rep ; 12(10): e16038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757249

RESUMEN

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Asunto(s)
Eritropoyetina , Ejercicio Físico , Músculo Esquelético , Oxidación-Reducción , Masculino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Adulto , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Oxidación-Reducción/efectos de los fármacos , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Hematócrito , Metabolismo Energético/efectos de los fármacos , Adulto Joven , Metabolismo de los Lípidos/efectos de los fármacos
3.
Med Sci Sports Exerc ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160756

RESUMEN

PURPOSE: Energy deficiency decreases muscle protein synthesis (MPS), possibly due to greater whole-body essential amino acid (EAA) requirements and reliance on energy stores. Whether energy deficit-induced anabolic resistance is overcome with non-nitrogenous supplemental energy or if increased energy as EAA is needed is unclear. We tested the effects of energy as EAA or carbohydrate, combined with an EAA-enriched whey protein, on post-exercise MPS (%/h) and whole-body protein turnover (g protein/240 min). METHODS: 17 adults (mean ± SD; age: 26 ± 6 y, BMI: 25 ± 3 kg/m2) completed a randomized, parallel study including two 5-d energy conditions (BAL, energy balance; DEF, -30 ± 3% energy requirements) separated by ≥7 d. Volunteers consumed EAA-enriched whey with added EAA (+EAA; 304 kcal, 56 g protein, 48 g EAA, 17 g carbohydrate, 2 g fat; n = 8) or added carbohydrate (+CHO; 311 kcal, 34 g protein, 24 g EAA, 40 g carbohydrate, 2 g fat; n = 9) following exercise. MPS and whole-body protein synthesis (PS), breakdown (PB), and net balance (NET; PS-PB) were estimated postexercise with isotope kinetics. RESULTS: MPS rates were greater in +EAA (0.083 ± 0.02) than +CHO (0.059 ± 0.01; P = 0.015) during DEF, but similar during BAL (P = 0.45) and across energy conditions within treatments (P = 0.056). PS rates were greater for +EAA (BAL, 117.9 ± 16.5; DEF, 110.3 ± 14.8) than +CHO (BAL, 81.6 ± 8.0; DEF, 83.8 ± 5.9 g protein/240 min; both P < 0.001), and greater during BAL than DEF in +EAA (P = 0.045). PB rates were less in +EAA (8.0 ± 16.5) than +CHO (37.8 ± 7.6 g protein/240 min; P < 0.001), and NET was greater in +EAA (106.1 ± 6.3) than +CHO (44.8 ± 8.5 g protein/240 min; P < 0.001). CONCLUSIONS: These data suggest that supplementing EAA-enriched whey protein with more energy as EAA, not carbohydrate, maintains postexercise MPS during energy deficit at rates comparable to those observed during energy balance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA