RESUMEN
The cardiac conduction system in large carnivores, such as the African lion (Panthera leo), represents a significant knowledge gap in both veterinary science and in cardiac electrophysiology. Short QT intervals have been reported from zoo-kept, anaesthetized lions, and our goal was to record the first ECGs from wild, conscious lions roaming freely, and compare them to zoo-kept lions under the hypothesis that short QT is unique to zoo-kept lions. Macroscopic and histological examinations were performed on heart tissue removed from nine healthy zoo lions. ECGs were recorded from the nine anaesthetized zoo-kept lions, and from 15 anaesthetized and conscious wild lions in Africa. Our histological and topographical description of the lion's heart matched what has previously been published. In conscious lions, the ECG recordings revealed a mean heart rate of 70 ± 4 beats/min, with faster heart rates during the night. PQ and QT intervals were heart rate dependent in the conscious lions. Interestingly, QT intervals recorded in wild lions were markedly longer than QT intervals from zoo lions (398 ± 40 vs. 297 ± 9 ms, respectively; P < 0.0001). Anaesthesia or heart rate did not account for this difference. We provide a comprehensive description of the cardiac anatomy and electrophysiology of wild and zoo-kept lions. QT intervals were significantly shorter in zoo lions, suggesting functional disparities in cardiac electrophysiology between wild and zoo-kept lions, potentially related to physical fitness. These findings underscore the plasticity of cardiac electrophysiology and may be of value when reintroducing endangered species into the wild and when managing lions in human care.
RESUMEN
Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites, which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1× log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (P = 0.003)-being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.
Asunto(s)
Distonía , Trastornos Distónicos , Biomarcadores , Metilación de ADN/genética , Distonía/genética , Distonía/terapia , Trastornos Distónicos/genética , Trastornos Distónicos/terapia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , MutaciónRESUMEN
PURPOSE: Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. METHODS: Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. RESULTS: We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. CONCLUSION: This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content.
Asunto(s)
Epigenoma , Estudio de Asociación del Genoma Completo , Masculino , Persona de Mediana Edad , Humanos , Femenino , Epigenoma/genética , Islas de CpG , Epigénesis Genética , Metilación de ADNRESUMEN
Understanding how animals move in dense environments where vision is compromised is a major challenge. We used GPS and dead-reckoning to examine the movement of Magellanic penguins commuting through vegetation that precluded long-distance vision. Birds leaving the nest followed the shortest, quickest route to the sea (the 'ideal path', or 'I-path') but return tracks depended where the birds left the water. Penguins arriving at the beach departure spot mirrored the departure. Most of those landing at a distance from the departure spot travelled slowly, obliquely to the coast at a more acute angle than a beeline trajectory to the nest. On crossing their I-path, these birds then followed this route quickly to their nests. This movement strategy saves birds distance, time and energy compared to a route along the beach and the into the colony on the I-track and saves time and energy compared to a beeline trajectory which necessitates slow travel in unfamiliar areas. This suggests that some animals adopt tactics that take them to an area where their navigational capacities are enhanced for efficient travel in challenging environments.
Asunto(s)
Enfermedades de las Aves , Spheniscidae , AnimalesRESUMEN
BACKGROUND: Epigenomic (e.g., DNA methylation [DNAm]) changes have been hypothesized as intermediate step linking environmental exposures with allergic disease. Associations between individual DNAm at CpGs and allergic diseases have been reported, but their joint predictive capability is unknown. METHODS: Data were obtained from 240 children of the German LISA cohort. DNAm was measured in blood clots at 6 (N = 234) and 10 years (N = 227) using the Illumina EPIC chip. Presence of aeroallergen sensitization was measured in blood at 6, 10, and 15 years. We calculated six methylation risk scores (MRS) for allergy-related phenotypes, like total and specific IgE, asthma, or any allergies, based on available publications and assessed their performances both cross-sectionally (biomarker) and prospectively (predictor of the disease). Dose-response associations between aeroallergen sensitization and MRS were evaluated. RESULTS: All six allergy-related MRS were highly correlated (r > .86), and seven CpGs were included in more than one MRS. Cross-sectionally, we observed an 81% increased risk for aeroallergen sensitization at 6 years with an increased MRS by one standard deviation (best-performing MRS, 95% confidence interval = [43%; 227%]). Significant associations were also seen cross-sectionally at 10 years and prospectively, though the effect of the latter was attenuated when restricted to participants not sensitized at baseline. A clear dose-response relationship with levels of aeroallergen sensitization could be established cross-sectionally, but not prospectively. CONCLUSION: We found good classification and prediction capabilities of calculated allergy-related MRS cross-sectionally, underlining the relevance of altered gene-regulation in allergic diseases and providing insights into potential DNAm biomarkers of aeroallergen sensitization.
Asunto(s)
Cohorte de Nacimiento , Hipersensibilidad , Alérgenos , Biomarcadores , Metilación de ADN , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/epidemiología , Hipersensibilidad/etiología , Factores de RiesgoRESUMEN
Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation- and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (PCochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Metilación de ADN , Epigenoma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dióxido de Nitrógeno/análisis , Ozono/análisis , Ozono/toxicidad , Material Particulado/análisisRESUMEN
BACKGROUND: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS: A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR. RESULTS: In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23 were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS: In a discovery-replication setting, we identified 57 proteins transethnically associated with eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.
RESUMEN
Animals alter their habitat use in response to the energetic demands of movement ('energy landscapes') and the risk of predation ('the landscape of fear'). Recent research suggests that animals also select habitats and move in ways that minimise their chance of temporarily losing control of movement and thereby suffering slips, falls, collisions or other accidents, particularly when the consequences are likely to be severe (resulting in injury or death). We propose that animals respond to the costs of an 'accident landscape' in conjunction with predation risk and energetic costs when deciding when, where, and how to move in their daily lives. We develop a novel theoretical framework describing how features of physical landscapes interact with animal size, morphology, and behaviour to affect the risk and severity of accidents, and predict how accident risk might interact with predation risk and energetic costs to dictate movement decisions across the physical landscape. Future research should focus on testing the hypotheses presented here for different real-world systems to gain insight into the relative importance of theorised effects in the field.
Asunto(s)
Ecosistema , Conducta Predatoria , Accidentes , Animales , MovimientoRESUMEN
Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attached accelerometers on 10 diverse free-ranging terrestrial species from koalas to cheetahs, we detail a tag-based acceleration method to clarify acceptable tag mass limits. We quantify animal athleticism in terms of fractions of animal movement time devoted to different collar-recorded accelerations and convert those accelerations to forces (acceleration × tag mass) to allow derivation of any defined force limits for specified fractions of any animal's active time. Specifying that tags should exert forces that are less than 3% of the gravitational force exerted on the animal's body for 95% of the time led to corrected tag masses that should constitute between 1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in four carnivore species encompassing two orders of magnitude in mass (ca 2-200 kg), forces exerted by '3%' tags were equivalent to 4-19% of carrier body mass during moving, with a maximum of 54% in a hunting cheetah. This fundamentally changes how acceptable tag mass limits should be determined by ethics bodies, irrespective of the force and time limits specified.
Asunto(s)
Aceleración , Carnívoros , Animales , MovimientoRESUMEN
BACKGROUND: The metabolic syndrome (MetS), defined by the simultaneous clustering of cardio-metabolic risk factors, is a significant worldwide public health burden with an estimated 25% prevalence worldwide. The pathogenesis of MetS is not entirely clear and the use of molecular level data could help uncover common pathogenic pathways behind the observed clustering. METHODS: Using a highly multiplexed aptamer-based affinity proteomics platform, we examined associations between plasma proteins and prevalent and incident MetS in the KORA cohort (n = 998) and replicated our results for prevalent MetS in the HUNT3 study (n = 923). We applied logistic regression models adjusted for age, sex, smoking status, and physical activity. We used the bootstrap ranking algorithm of least absolute shrinkage and selection operator (LASSO) to select a predictive model from the incident MetS associated proteins and used area under the curve (AUC) to assess its performance. Finally, we investigated the causal effect of the replicated proteins on MetS using two-sample Mendelian randomization. RESULTS: Prevalent MetS was associated with 116 proteins, of which 53 replicated in HUNT. These included previously reported proteins like leptin, and new proteins like NTR domain-containing protein 2 and endoplasmic reticulum protein 29. Incident MetS was associated with 14 proteins in KORA, of which 13 overlap the prevalent MetS associated proteins with soluble advanced glycosylation end product-specific receptor (sRAGE) being unique to incident MetS. The LASSO selected an eight-protein predictive model with an (AUC = 0.75; 95% CI = 0.71-0.79) in KORA. Mendelian randomization suggested causal effects of three proteins on MetS, namely apolipoprotein E2 (APOE2) (Wald-Ratio = - 0.12, Wald-p = 3.63e-13), apolipoprotein B (APOB) (Wald-Ratio = - 0.09, Wald-p = 2.54e-04) and proto-oncogene tyrosine-protein kinase receptor (RET) (Wald-Ratio = 0.10, Wald-p = 5.40e-04). CONCLUSIONS: Our findings offer new insights into the plasma proteome underlying MetS and identify new protein associations. We reveal possible casual effects of APOE2, APOB and RET on MetS. Our results highlight protein candidates that could potentially serve as targets for prevention and therapy.
Asunto(s)
Proteínas Sanguíneas/análisis , Síndrome Metabólico/sangre , Proteoma , Proteómica , Adulto , Anciano , Anciano de 80 o más Años , Apolipoproteína B-100/sangre , Apolipoproteína B-100/genética , Apolipoproteína E2/sangre , Apolipoproteína E2/genética , Biomarcadores/sangre , Proteínas Sanguíneas/genética , Factores de Riesgo Cardiometabólico , Estudios Transversales , Femenino , Alemania/epidemiología , Humanos , Incidencia , Masculino , Análisis de la Aleatorización Mendeliana , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Persona de Mediana Edad , Noruega/epidemiología , Valor Predictivo de las Pruebas , Prevalencia , Estudios Prospectivos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret/sangre , Proteínas Proto-Oncogénicas c-ret/genética , Medición de RiesgoRESUMEN
The sequence of transitions between different phases of BiNbO4 has been thoroughly investigated and clarified using thermal analysis, high-resolution neutron diffraction, and Raman spectroscopy. The theoretical optical phonon modes of the α-phase have been calculated. Based on thermoanalytical data supported by density functional theory (DFT) calculations, the ß-phase is proposed to be metastable, while the α- and γ-phases are stable below and above 1040 °C, respectively. Accurate positional parameters for oxygen positions in the three main polymorphs (α, ß, and γ) are presented and the structural relationships between these polymorphs are discussed. Even though no significant changes, only relaxation phenomena, are observed in the dielectric behavior of α-BiNbO4 below 1000 °C, evidence of two further subtle transitions at â¼350 and 600 °C is presented through careful analysis of structural parameters from variable temperature neutron diffraction measurements. Such phase variations are also evident in the phonon modes in Raman spectra and supported by changes in the thermoanalytical data. These subtle transitions may correspond to the previously proposed antiferroelectric to ferroelectric and ferroelectric to paraelectric phase transitions, respectively.
RESUMEN
Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.
Asunto(s)
Grosor Intima-Media Carotídeo , Enfermedad de la Arteria Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/genética , Estudios Transversales , Epigenoma , Humanos , Factores de RiesgoRESUMEN
DNA methylation may be one of the mechanisms by which alcohol consumption is associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA methylation association study of alcohol consumption and a longitudinal analysis of repeated measurements taken several years apart. Using the Illumina HumanMethylation450 BeadChip, DNA methylation was measured in blood samples from 5606 Melbourne Collaborative Cohort Study (MCCS) participants. For 1088 of them, these measures were repeated using blood samples collected a median of 11 years later. Associations between alcohol intake and blood DNA methylation were assessed using linear mixed-effects regression models. Independent data from the London Life Sciences Prospective Population (LOLIPOP) (N = 4042) and Cooperative Health Research in the Augsburg Region (KORA) (N = 1662) cohorts were used to replicate associations discovered in the MCCS. Cross-sectional analyses identified 1414 CpGs associated with alcohol intake at P < 10-7 , 1243 of which had not been reported previously. Of these novel associations, 1078 were replicated (P < .05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated 403 of 518 previously reported associations. Interaction analyses suggested that associations were stronger for women, non-smokers, and participants genetically predisposed to consume less alcohol. Of the 1414 CpGs, 530 were differentially methylated (P < .05) in former compared with current drinkers. Longitudinal associations between the change in alcohol intake and the change in methylation were observed for 513 of the 1414 cross-sectional associations. Our study indicates that alcohol intake is associated with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that the methylation status of alcohol-associated CpGs may change with alcohol consumption changes in adulthood.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Metilación de ADN , Adulto , Anciano , Estudios de Cohortes , Islas de CpG , Estudios Transversales , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.
Asunto(s)
Ecología , Movimiento , AnimalesRESUMEN
It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.
Asunto(s)
Aceleración , Metabolismo Energético , Animales , MovimientoRESUMEN
Using BaTiO3 as a model ferroelectric material we investigated the influence of the ferroelectric dipole on the photocatalytic activity of a heterogeneous BaTiO3/α-Fe2O3 photocatalyst. Two distinct BaTiO3 samples were used: BTO and BTO-A. The latter consists more ferroelectric tetragonal phase and thus stronger ferroelectricity. It was found that under identical experimental conditions, the photodecolourisation rate of a target dye using BTO-A/α-Fe2O3 under visible light was 1.3 times that of BTO/α-Fe2O3. Photoelectrochemical and photoluminescence analysis confirmed a more effective charge carrier separation in BTO-A/α-Fe2O3. Considering solely the photoexcitation of α-Fe2O3 in the composite photocatalysts under visible light and the similar microstructures of the two catalysts, we propose that the enhanced decolourisation rate when using BTO-A/α-Fe2O3 is due to the improved charge carrier separation and extended charge carrier lifetime arising from an interaction between the ferroelectric dipole and the carriers in α-Fe2O3. Our results demonstrate a new process to use a ferroelectric dipole to manipulate the charge carrier transport, overcome recombination, and extend the charge carrier lifetime of the surface material in a heterogeneous catalyst system.
RESUMEN
Inferring a person's smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current (average AUCcrossvalidation 0.925 ± 0.021, AUCexternalvalidation0.914), former (0.766 ± 0.023, 0.699) and never smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications.
Asunto(s)
Cotinina/sangre , Metilación de ADN , ADN/sangre , Epigenómica/métodos , Fumar/efectos adversos , Adulto , Área Bajo la Curva , Biomarcadores/sangre , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Fumar/genética , Cese del Hábito de FumarRESUMEN
The susceptibility to autoimmune diseases is influenced by genes encoding major histocompatibility complex (MHC) proteins. By examining the epigenetic methylation maps of cord blood samples, we found marked differences in the methylation status of CpG sites within the MHC genes (cis-metQTLs) between carriers of the type 1 diabetes risk haplotypes HLA-DRB1*03-DQA1*0501-DQB1*0201 (DR3-DQ2) and HLA-DRB1*04-DQA1*0301-DQB1*0302 (DR4-DQ8). These differences were found in children and adults, and were accompanied by reduced HLA-DR protein expression in immune cells with the HLA-DR3-DQ2 haplotype. Extensive cis-metQTLs were identified in all 45 immune and non-immune type 1 diabetes susceptibility genes analyzed in this study. We observed and validated a novel association between the methylation status of CpG sites within the LDHC gene and the development of insulin autoantibodies in early childhood in children who are carriers of the highest type 1 diabetes risk genotype. Functionally relevant epigenetic changes in susceptibility genes may represent therapeutic targets for type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Genotipo , Antígenos HLA-DQ/genética , Cadenas HLA-DRB1/genética , L-Lactato Deshidrogenasa/genética , Adulto , Anciano , Alelos , Autoanticuerpos/metabolismo , Preescolar , Metilación de ADN , Epigénesis Genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Insulina/inmunología , Masculino , Persona de Mediana Edad , Polimorfismo Genético , RiesgoRESUMEN
Many large birds rely on thermal soaring flight to travel cross-country. As such, they are under selective pressure to minimise the time spent gaining altitude in thermal updrafts. Birds should be able to maximise their climb rates by maintaining a position close to the thermal core through careful selection of bank angle and airspeed; however, there have been few direct measurements of either parameter. Here, we apply a novel methodology to quantify the bank angles selected by soaring birds using on-board magnetometers. We couple these data with airspeed measurements to parameterise the soaring envelope of two species of Gyps vulture, from which it is possible to predict 'optimal' bank angles. Our results show that these large birds respond to the challenges of gaining altitude in the initial phase of the climb, where thermal updrafts are weak and narrow, by adopting relatively high, and conserved, bank angles (25-35 deg). The bank angle decreased with increasing altitude, in a manner that was broadly consistent with a strategy of maximising the rate of climb. However, the lift coefficients estimated in our study were lower than those predicted by theoretical models and wind-tunnel studies. Overall, our results highlight how the relevant currency for soaring performance changes within individual climbs: when thermal radius is limiting, birds vary bank angle and maintain a constant airspeed, but speed increases later in the climb in order to respond to decreasing air density.
Asunto(s)
Movimientos del Aire , Falconiformes/fisiología , Vuelo Animal/fisiología , Altitud , Animales , Fenómenos Biomecánicos , Alas de AnimalesRESUMEN
Recent work has highlighted that 'energy landscapes' should affect animal movement trajectories although expected patterns are rarely quantified. We developed a model, incorporating speed, substrate, superstrate and terrain slope, to determine minimized movement costs for an energetically well-understood model animal, Homo sapiens, negotiating an urban environment, to highlight features that promote increased tortuosity and affect area use. The model showed that high differential travel power costs between adjacent areas, stemming from substantial environmental heterogeneity in the energy landscape, produced the most tortuous least-cost paths across scales. In addition, projected territory size and shape in territorial animals is likely to be affected by the details in the energy landscape. We suggest that cognisance of energy landscapes is important for understanding animal movement patterns and that energetic differences between least cost- and observed pathways might code for, and give an explicit value to, other important landscape-use factors, such as the landscape of fear, food availability or social effects.