Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107441, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838777

RESUMEN

The transmembrane helices of receptor tyrosine kinases (RTKs) have been proposed to switch between two different dimeric conformations, one associated with the inactive RTK and the other with the active RTK. Furthermore, recent work has demonstrated that some full-length RTKs are associated into oligomers that are larger than dimers, raising questions about the roles of the TM helices in the assembly and function of these oligomers. Here we probe the roles of the TM helices in the assembly of EphA2 RTK oligomers in the plasma membrane. We employ mutagenesis to evaluate the relevance of a published NMR dimeric structure of the isolated EphA2 TM helix in the context of the full-length EphA2 in the plasma membrane. We use two fluorescence methods, Förster Resonance Energy Transfer and Fluorescence Intensity Fluctuations spectrometry, which yield complementary information about the EphA2 oligomerization process. These studies reveal that the TM helix mutations affect the stability, structure, and size of EphA2 oligomers. However, the effects are multifaceted and point to a more complex role of the TM helix than the one expected from the "TM dimer switch" model.


Asunto(s)
Multimerización de Proteína , Receptor EphA2 , Receptor EphA2/metabolismo , Receptor EphA2/química , Receptor EphA2/genética , Humanos , Transferencia Resonante de Energía de Fluorescencia , Membrana Celular/metabolismo , Conformación Proteica en Hélice alfa , Mutación
2.
J Biol Chem ; 298(10): 102370, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970390

RESUMEN

The receptor tyrosine kinase (RTK) EphA2 is expressed in epithelial and endothelial cells and controls the assembly of cell-cell junctions. EphA2 has also been implicated in many diseases, including cancer. Unlike most RTKs, which signal predominantly as dimers, EphA2 readily forms high-order oligomers upon ligand binding. Here, we investigated if a correlation exists between EphA2 signaling properties and the size of the EphA2 oligomers induced by multiple ligands, including the widely used ephrinA1-Fc ligand, the soluble monomeric m-ephrinA1, and novel engineered peptide ligands. We used fluorescence intensity fluctuation (FIF) spectrometry to characterize the EphA2 oligomer populations induced by the different ligands. Interestingly, we found that different monomeric and dimeric ligands induce EphA2 oligomers with widely different size distributions. Our comparison of FIF brightness distribution parameters and EphA2 signaling parameters reveals that the efficacy of EphA2 phosphorylation on tyrosine 588, an autophosphorylation response contributing to EphA2 activation, correlates with EphA2 mean oligomer size. However, we found that other characteristics, such as the efficacy of AKT inhibition and ligand bias coefficients, appear to be independent of EphA2 oligomer size. Taken together, this work highlights the utility of FIF in RTK signaling research and demonstrates a quantitative correlation between the architecture of EphA2 signaling complexes and signaling features.


Asunto(s)
Efrina-A1 , Receptor EphA2 , Células Endoteliales/metabolismo , Efrina-A1/química , Ligandos , Fosforilación , Receptor EphA2/metabolismo , Humanos
3.
J Pept Sci ; 29(8): e3482, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36739581

RESUMEN

Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.


Asunto(s)
Péptidos , Proteínas , Estados Unidos , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Composición de Medicamentos
4.
Proc Natl Acad Sci U S A ; 117(15): 8437-8448, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32241895

RESUMEN

Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drug-resistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of gram-positive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/síntesis química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/síntesis química , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Bacterias/genética , Infecciones Bacterianas/microbiología , Evolución Molecular Dirigida , Femenino , Humanos , Ratones , Pruebas de Sensibilidad Microbiana
5.
J Membr Biol ; 255(4-5): 503-511, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35435452

RESUMEN

Gram-negative bacteria belonging to the genus Burkholderia are remarkably resistant to broad-spectrum, cationic, antimicrobial peptides (AMPs). It has been proposed that this innate resistance is related to changes in the outer membrane lipopolysaccharide (OM LPS), including the constitutive, essential modification of outer membrane Lipid A phosphate groups with cationic 4-amino-4-deoxy-arabinose. This modification reduces the overall negative charge on the OM LPS which may change the OM structure and reduce the binding, accumulation, and permeation of cationic AMPs. Similarly, the Gram-negative pathogen Pseudomonas aeruginosa can quickly become resistant to many AMPs by multiple mechanisms, frequently, including activation of the arn operon, which leads, transiently, to the same modification of Lipid A. We recently discovered a set of synthetically evolved AMPs that do not invoke any resistance in P. aeruginosa over multiple passages and thus are apparently not inhibited by aminorabinosylation of Lipid A in P. aeruginosa. Here we test these resistance-avoiding peptides, within a set of 18 potent AMPs, against Burkholderia thailandensis. We find that none of the AMPs tested have measurable activity against B. thailandensis. Some were inactive at concentrations as high as 150 µM, despite all having sterilizing activity at ≤ 10 µM against a panel of common, human bacterial pathogens, including P. aeruginosa. We speculate that the constitutive modification of Lipid A in members of the Burkholderia genus is only part of a broader set of modifications that change the architecture of the OM to provide such remarkable levels of resistance to cationic AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Burkholderia , Humanos , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Burkholderia/metabolismo , Lípido A , Lipopolisacáridos/farmacología , Lípidos de la Membrana , Fosfatos , Pseudomonas aeruginosa/metabolismo
6.
Biophys J ; 120(4): 618-630, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33460594

RESUMEN

Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved.


Asunto(s)
Membrana Dobles de Lípidos , Péptidos , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína
7.
J Membr Biol ; 254(1): 75-96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564914

RESUMEN

The use of designed antimicrobial peptides as drugs has been impeded by the absence of simple sequence-structure-function relationships and design rules. The likely cause is that many of these peptides permeabilize membranes via highly disordered, heterogeneous mechanisms, forming aggregates without well-defined tertiary or secondary structure. We suggest that the combination of high-throughput library screening with atomistic computer simulations can successfully address this challenge by tuning a previously developed general pore-forming peptide into a selective pore-former for different lipid types. A library of 2916 peptides was designed based on the LDKA template. The library peptides were synthesized and screened using a high-throughput orthogonal vesicle leakage assay. Dyes of different sizes were entrapped inside vesicles with varying lipid composition to simultaneously screen for both pore size and affinity for negatively charged and neutral lipid membranes. From this screen, nine different LDKA variants that have unique activity were selected, sequenced, synthesized, and characterized. Despite the minor sequence changes, each of these peptides has unique functional properties, forming either small or large pores and being selective for either neutral or anionic lipid bilayers. Long-scale, unbiased atomistic molecular dynamics (MD) simulations directly reveal that rather than rigid, well-defined pores, these peptides can form a large repertoire of functional dynamic and heterogeneous aggregates, strongly affected by single mutations. Predicting the propensity to aggregate and assemble in a given environment from sequence alone holds the key to functional prediction of membrane permeabilization.


Asunto(s)
Péptidos Antimicrobianos/química , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Péptidos
8.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907984

RESUMEN

Numerous peptides inhibit the entry of enveloped viruses into cells. Some of these peptides have been shown to inhibit multiple unrelated viruses. We have suggested that such broad-spectrum antiviral peptides share a property called interfacial activity; they are somewhat hydrophobic and amphipathic, with a propensity to interact with the interfacial zones of lipid bilayer membranes. In this study, we further tested the hypothesis that such interfacial activity is a correlate of broad-spectrum antiviral activity. In this study, several families of peptides, selected for the ability to partition into and disrupt membrane integrity but with no known antiviral activity, were tested for the ability to inhibit multiple diverse enveloped viruses. These include Lassa pseudovirus, influenza virus, dengue virus type 2, herpes simplex virus 1, and nonenveloped human adenovirus 5. Various families of interfacially active peptides caused potent inhibition of all enveloped viruses tested at low and submicromolar concentrations, well below the range in which they are toxic to mammalian cells. These membrane-active peptides block uptake and fusion with the host cell by rapidly and directly interacting with virions, destabilizing the viral envelope, and driving virus aggregation and/or intervirion envelope fusion. We speculate that the molecular characteristics shared by these peptides can be exploited to enable the design, optimization, or molecular evolution of novel broad-spectrum antiviral therapeutics.IMPORTANCE New classes of antiviral drugs are needed to treat the ever-changing viral disease landscape. Current antiviral drugs treat only a small number of viral diseases, leaving many patients with established or emerging infections to be treated solely with supportive care. Recent antiviral peptide research has produced numerous membrane-interacting peptides that inhibit diverse enveloped viruses in vitro and in vivo Peptide therapeutics are becoming more common, with over 60 FDA-approved peptides for clinical use. Included in this class of therapeutics is enfuvirtide, a 36-residue peptide drug that inhibits HIV entry/fusion. Due to their broad-spectrum mechanism of action and enormous potential sequence diversity, peptides that inhibit virus entry could potentially fulfill the need for new antiviral therapeutics; however, a better understanding of their mechanism is needed for the optimization or evolution of sequence design to combat the wide landscape of viral disease.


Asunto(s)
Antivirales/farmacología , Péptidos/química , Péptidos/metabolismo , Internalización del Virus/efectos de los fármacos , Virus/efectos de los fármacos , Animales , Chlorocebus aethiops , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Orthomyxoviridae , Células Vero , Envoltura Viral , Virosis/tratamiento farmacológico
9.
BMC Microbiol ; 21(1): 234, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429066

RESUMEN

BACKGROUND: Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi. RESULTS: Here, we examine the antibiofilm activity of Burkholderia thailandensis OMVs against the oral biofilm-forming pathogen Streptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are co-administered with gentamicin, the efficacy of the antibiotic against S. mutans biofilms is enhanced. CONCLUSION: These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that can inhibit and potentially eradicate biofilms.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Vesículas Extracelulares/química , Streptococcus mutans/fisiología , Membrana Externa Bacteriana/química , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/patogenicidad
10.
Chem Rev ; 119(9): 6040-6085, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30624911

RESUMEN

Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Péptidos/química , Péptidos/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Permeabilidad de la Membrana Celular , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa
11.
Biochem Biophys Res Commun ; 524(3): 730-735, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32035620

RESUMEN

Post-translational modifications (PTMs) play pivotal roles in controlling the stability and activity of the tumor suppressor p53 in response to distinct stressors. Here we report an unexpected finding of a short chain fatty acid modification of p53 in human cells. Crotonic acid (CA) treatment induces p53 crotonylation, but surprisingly reduces its protein, but not mRNA level, leading to inhibition of p53 activity in a dose dependent fashion. Surprisingly this crotonylation targets serine 46, instead of any predicted lysine residues, of p53, as detected in TCEP-probe labeled crotonylation and anti-crotonylated peptide antibody reaction assays. This is further confirmed by substitution of serine 46 with alanine, which abolishes p53 crotonylation in vitro and in cells. CA increases p53-dependent glycolytic activity, and augments cancer cell proliferation in response to metabolic or DNA damage stress. Since serine 46 is only found in human p53, our studies unveil an unconventional PTM unique for human p53, impairing its activity in response to CA. Because CA is likely produced by the gut microbiome, our results also predict that this type of PTM might play a role in early human colorectal neoplasia development by negating p53 activity without mutation of this tumor suppressor gene.


Asunto(s)
Crotonatos/metabolismo , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Crotonatos/química , Glucosa/deficiencia , Glucólisis , Humanos , Lisina/metabolismo , Mitocondrias/metabolismo , Proteína p53 Supresora de Tumor/química
12.
J Membr Biol ; 253(3): 185-190, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32488366

RESUMEN

The path to our modern understanding of the structure of the lipid bilayer membrane is a long one that can be traced from today perhaps as far back as Benjamin Franklin in the eighteenth century. Here, I provide a personal account of one of the important steps in that path, the description of the "Complete Structure" of a hydrated, fluid phase dioleoyl phosphatidylcholine bilayer by the joint refinement of neutron and X-ray diffraction data by Stephen White and his colleagues.


Asunto(s)
Fenómenos Químicos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Fosfatidilcolinas/química , Relación Estructura-Actividad , Difracción de Rayos X
13.
Trends Biochem Sci ; 40(12): 749-764, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26545486

RESUMEN

The permeability barrier imposed by cellular membranes limits the access of exogenous compounds to the interior of cells. Researchers and patients alike would benefit from efficient methods for intracellular delivery of a wide range of membrane-impermeant molecules, including biochemically active small molecules, imaging agents, peptides, peptide nucleic acids, proteins, RNA, DNA, and nanoparticles. There has been a sustained effort to exploit cell penetrating peptides (CPPs) for the delivery of such useful cargoes in vitro and in vivo because of their biocompatibility, ease of synthesis, and controllable physical chemistry. Here, we discuss the many mechanisms by which CPPs can function, and describe a taxonomy of mechanisms that could be help organize future efforts in the field.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/clasificación , Péptidos de Penetración Celular/metabolismo , Animales , Membrana Celular/química , Péptidos de Penetración Celular/química , Humanos
14.
J Am Chem Soc ; 141(12): 4839-4848, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30839209

RESUMEN

In the age of failing small-molecule antibiotics, tapping the near-infinite structural and chemical repertoire of antimicrobial peptides (AMPs) offers one of the most promising routes toward developing next-generation antibacterial compounds. One of the key impediments en route is the lack of methodologies for systematic rational design and optimization of new AMPs. Here we present a new simulation-guided rational design approach and apply it to develop a potent new AMP. We show that unbiased atomic detail molecular dynamics (MD) simulations are able to predict structures formed by evolving peptide designs enabling structure-based rational fine-tuning of functional properties. Starting from a 14-residue poly leucine template we demonstrate the design of a minimalistic potent new AMP. Consisting of only four types of amino acids (LDKA), this peptide forms large pores in microbial membranes at very low peptide-to-lipid ratios (1:1000) and exhibits low micromolar activity against common Gram-positive and Gram-negative pathogenic bacteria. Remarkably, the four amino acids were sufficient to encode preferential poration of bacterial membranes with negligible damage to red blood cells at bactericidal concentrations. As the sequence is too short to span cellular membranes, pores are formed by stacking of channels in each bilayer leaflet.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Porosidad , Conformación Proteica
15.
J Am Chem Soc ; 141(16): 6706-6718, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30916949

RESUMEN

Using synthetic molecular evolution, we previously discovered a family of peptides that cause macromolecular poration in synthetic membranes at low peptide concentration in a way that is triggered by acidic pH. To understand the mechanism of action of these "pHD peptides", here we systematically explored structure-function relationships through measurements of the effect of pH and peptide concentration on membrane binding, peptide structure, and the formation of macromolecular-sized pores in membranes. Both AFM and functional assays demonstrate the peptide-induced appearance of large pores in bilayers. Pore formation has a very steep pH dependence and is also dependent on peptide concentration. In vesicles, 50% leakage of 40 kDa dextrans occurs at 1 bound peptide per 1300 lipids or only 75 peptides per vesicle, an observation that holds true across a wide range of acidic pH values. The major role of pH is to regulate the amount of peptide bound per vesicle. The physical chemistry and sequence of the pHD peptides affect their potency and pH dependence; therefore, the sequence-structure-function relationships described here can be used for the future design and optimization of membrane permeabilizing peptides for specific applications.


Asunto(s)
Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Concentración de Iones de Hidrógeno , Péptidos/química , Fosfatidilcolinas/química , Estructura Secundaria de Proteína
16.
Aust J Chem ; 73(3): 96-103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32341596

RESUMEN

Peptide-induced permeabilization of lipid vesicles has been measured for decades and has provided many insights into the sequence-structure-function relationships of membrane-active peptides. However, researchers in the field have noted that many experiments show transient permeabilization, in which a burst of leakage occurs immediately after peptide addition, followed by a slowdown or cessation of leakage before all contents have been released. This widely observed, but rarely studied, phenomenon is not explained by standard equilibrium pore models that are commonly invoked in both experimental and computational studies. Here we discuss observations of transient permeabilization, and we outline a pathway towards understanding this enigmatic phenomenon.

17.
Adv Exp Med Biol ; 1117: 241-255, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30980361

RESUMEN

Despite long-standing promise and many known examples, antimicrobial peptides (AMPs) have failed, with few exceptions, to significantly impact human medicine. Impediments to the systemic activity of AMPs include proteolysis, host cell interactions, and serum protein binding, factors that are not often considered in the early stages of AMP development. Here we discuss how synthetic molecular evolution, iterative cycles of library design, and physiologically relevant screening can be used to evolve AMPs that do not have these impediments.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Evolución Molecular Dirigida , Humanos , Ingeniería de Proteínas
18.
J Am Chem Soc ; 140(20): 6441-6447, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29694775

RESUMEN

Pore-forming peptides with novel functions have potential utility in many biotechnological applications. However, the sequence-structure-function relationships of pore forming peptides are not understood well enough to empower rational design. Therefore, in this work, we used synthetic molecular evolution to identify a novel family of peptides that are highly potent and cause macromolecular poration in synthetic lipid vesicles at low peptide concentration and at neutral pH. These unique 26-residue peptides, which we call macrolittins, release macromolecules from lipid bilayer vesicles made from zwitterionic PC lipids at peptide to lipid ratios as low as 1:1000, a property that is almost unprecedented among known membrane permeabilizing peptides. The macrolittins exist as membrane-spanning α-helices. They cause dramatic bilayer thinning and form large pores in planar supported bilayers. The high potency of these peptides is likely due to their ability to stabilize bilayer edges by a process that requires specific electrostatic interactions between peptides.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Péptidos/química , Péptidos/farmacología , Permeabilidad/efectos de los fármacos , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Biblioteca de Péptidos , Fosfolípidos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología
19.
J Virol ; 91(16)2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28539454

RESUMEN

The Ebola virus (EBOV) genome encodes a partly conserved 40-residue nonstructural polypeptide, called the delta peptide, that is produced in abundance during Ebola virus disease (EVD). The function of the delta peptide is unknown, but sequence analysis has suggested that delta peptide could be a viroporin, belonging to a diverse family of membrane-permeabilizing small polypeptides involved in replication and pathogenesis of numerous viruses. Full-length and conserved C-terminal delta peptide fragments permeabilize the plasma membranes of nucleated cells of rodent, dog, monkey, and human origin; increase ion permeability across confluent cell monolayers; and permeabilize synthetic lipid bilayers. Permeabilization activity is completely dependent on the disulfide bond between the two conserved cysteines. The conserved C-terminal portion of the peptide is biochemically stable in human serum, and most serum-stable fragments have full activity. Taken together, the evidence strongly suggests that Ebola virus delta peptide is a viroporin and that it may be a novel, targetable aspect of Ebola virus disease pathology.IMPORTANCE During the unparalleled West African outbreak of Ebola virus disease (EVD) that began in late 2013, the lack of effective countermeasures resulted in chains of serial infection and a high mortality rate among infected patients. A better understanding of disease pathology is desperately needed to develop better countermeasures. We show here that the Ebola virus delta peptide, a conserved nonstructural protein produced in large quantities by infected cells, has the characteristics of a viroporin. This information suggests a critical role for the delta peptide in Ebola virus disease pathology and as a possible target for novel countermeasures.

20.
Biophys J ; 113(4): 835-846, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28834720

RESUMEN

We previously used an orthogonal high-throughput screen to select peptides that spontaneously cross synthetic lipid bilayers without bilayer disruption. Many of the 12-residue spontaneous membrane translocating peptides (SMTPs) selected from the library contained a 5-residue consensus motif, LRLLR in positions 5-9. We hypothesized that the conserved motif could be a necessary and sufficient minimal motif for translocation. To test this and to explore the mechanism of spontaneous membrane translocation, we synthesized seven arginine placement variants of LRLLRWC and compared their membrane partitioning, translocation, and perturbation to one of the parent SMTPs, called "TP2". Several motif variant peptides translocate into synthetic vesicles with rates that are similar to TP2. However, the peptide containing the selected motif, LRLLRWC, was not the fastest; sequence context is also important for translocation efficiency. Although none of these peptides permeabilize bilayers, the motif peptides translocate faster at higher peptide to lipid ratios, suggesting that bilayer perturbation and/or cooperative interactions are important for their translocation. On the other hand, TP2 translocates slower as its concentration is increased, suggesting that TP2 translocates as a monomer and is inhibited by lateral interactions in the membrane. TP2 and the LRLLR motif peptide induce lipid translocation, suggesting that lipids chaperone them across the bilayer. The other motif peptides do not induce lipid flip-flop, suggesting an alternate mechanism. Concatenated motifs translocate slower than the motifs alone. Variants of TP2 with shorter and longer arginine side-chain analogs translocate slower than TP2. In summary, these results suggest that multiple patterns of leucine and arginine can support spontaneous membrane translocation, and that sequence context is important for the contribution of the motifs. Because motifs do not make simple, additive contributions to spontaneous translocation, rational engineering of novel SMTPs will remain difficult, providing even more reason to pursue SMTP discovery with synthetic molecular evolution.


Asunto(s)
Arginina , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Secuencia de Consenso , Leucina , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Potenciales de la Membrana , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA