Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(1): e110565, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36377476

RESUMEN

Cortical neuronal networks control cognitive output, but their composition and modulation remain elusive. Here, we studied the morphological and transcriptional diversity of cortical cholinergic VIP/ChAT interneurons (VChIs), a sparse population with a largely unknown function. We focused on VChIs from the whole barrel cortex and developed a high-throughput automated reconstruction framework, termed PopRec, to characterize hundreds of VChIs from each mouse in an unbiased manner, while preserving 3D cortical coordinates in multiple cleared mouse brains, accumulating thousands of cells. We identified two fundamentally distinct morphological types of VChIs, bipolar and multipolar that differ in their cortical distribution and general morphological features. Following mild unilateral whisker deprivation on postnatal day seven, we found after three weeks both ipsi- and contralateral dendritic arborization differences and modified cortical depth and distribution patterns in the barrel fields alone. To seek the transcriptomic drivers, we developed NuNeX, a method for isolating nuclei from fixed tissues, to explore sorted VChIs. This highlighted differentially expressed neuronal structural transcripts, altered exitatory innervation pathways and established Elmo1 as a key regulator of morphology following deprivation.


Asunto(s)
Lóbulo Parietal , Transcriptoma , Ratones , Animales , Interneuronas/fisiología , Colina O-Acetiltransferasa , Colinérgicos/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Cell Mol Life Sci ; 81(1): 55, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261097

RESUMEN

To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.


Asunto(s)
MicroARNs , Proteínas Ribosómicas , Animales , Humanos , Ratones , Acetilcolinesterasa , MicroARNs/genética , Primates , Proteínas Ribosómicas/genética
3.
RNA Biol ; 20(1): 482-494, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37498213

RESUMEN

Previous work on murine models and humans demonstrated global as well as tissue-specific molecular ageing trajectories of RNAs. Extracellular vesicles (EVs) are membrane vesicles mediating the horizontal transfer of genetic information between different tissues. We sequenced small regulatory RNAs (sncRNAs) in two mouse plasma fractions at five time points across the lifespan from 2-18 months: (1) sncRNAs that are free-circulating (fc-RNA) and (2) sncRNAs bound outside or inside EVs (EV-RNA). Different sncRNA classes exhibit unique ageing patterns that vary between the fcRNA and EV-RNA fractions. While tRNAs showed the highest correlation with ageing in both fractions, rRNAs exhibited inverse correlation trajectories between the EV- and fc-fractions. For miRNAs, the EV-RNA fraction was exceptionally strongly associated with ageing, especially the miR-29 family in adipose tissues. Sequencing of sncRNAs and coding genes in fat tissue of an independent cohort of aged mice up to 27 months highlighted the pivotal role of miR-29a-3p and miR-29b-3p in ageing-related gene regulation that we validated in a third cohort by RT-qPCR.


Asunto(s)
Vesículas Extracelulares , MicroARNs , ARN Pequeño no Traducido , Humanos , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Envejecimiento/genética
4.
Proc Natl Acad Sci U S A ; 117(51): 32606-32616, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288717

RESUMEN

Stroke is a leading cause of death and disability. Recovery depends on a delicate balance between inflammatory responses and immune suppression, tipping the scale between brain protection and susceptibility to infection. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Here, we report a regulatory shift in small RNA types in patient blood sequenced 2 d after ischemic stroke, comprising massive decreases of microRNA levels and concomitant increases of transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by qRT-PCR validated the top six up-regulated tRFs in a separate cohort of stroke patients, and independent datasets of small and long RNA sequencing pinpointed immune cell subsets pivotal to these responses, implicating CD14+ monocytes in the cholinergic inflammatory reflex. In-depth small RNA targeting analyses revealed the most-perturbed pathways following stroke and implied a structural dichotomy between microRNA and tRF target sets. Furthermore, lipopolysaccharide stimulation of murine RAW 264.7 cells and human CD14+ monocytes up-regulated the top six stroke-perturbed tRFs, and overexpression of stroke-inducible tRF-22-WE8SPOX52 using a single-stranded RNA mimic induced down-regulation of immune regulator Z-DNA binding protein 1. In summary, we identified a "changing of the guards" between small RNA types that may systemically affect homeostasis in poststroke immune responses, and pinpointed multiple affected pathways, which opens new venues for establishing therapeutics and biomarkers at the protein and RNA level.


Asunto(s)
Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/inmunología , MicroARNs/inmunología , Sistema Colinérgico no Neuronal/inmunología , ARN de Transferencia/inmunología , Anciano , Animales , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/inmunología , Accidente Cerebrovascular Isquémico/fisiopatología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Monocitos/fisiología , Sistema Colinérgico no Neuronal/genética , Estudios Prospectivos , Células RAW 264.7 , ARN de Transferencia/sangre , ARN de Transferencia/genética
5.
J Neurochem ; 158(6): 1425-1438, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638173

RESUMEN

Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.


Asunto(s)
Acetilcolina/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Colinérgicos/uso terapéutico , Neuronas Colinérgicas/metabolismo , ARN/metabolismo , Acetilcolina/genética , Animales , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/genética , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Humanos , ARN/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Brain Behav Immun ; 91: 601-614, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002634

RESUMEN

CD4+ T lymphocytes are key mediators of tissue damage after ischemic stroke. However, their infiltration kinetics and interactions with other immune cells in the delayed phase of ischemia remain elusive. We hypothesized that CD4+ T cells facilitate delayed autoreactive B cell responses in the brain, which have been previously linked to post-stroke cognitive impairment (PSCI). Therefore, we treated myelin oligodendrocyte glycoprotein T cell receptor transgenic 2D2 mice of both sexes with anti-CD4 antibody following 60-minute middle cerebral artery occlusion and assessed lymphocyte infiltration for up to 72 days. Anti-CD4-treatment eliminated CD4+ T cells from the circulation and ischemic brain for 28 days and inhibited B cell infiltration into the brain, particularly in animals with large infarcts. Absence of CD4+ T cells did not influence infarct maturation or survival. Once the CD4+ population recovered in the periphery, both CD4+ T and B lymphocytes entered the infarct site forming follicle-like structures. Additionally, we provide further evidence for PSCI that could be attenuated by CD4 depletion. Our findings demonstrate that CD4+ T cells are essential in delayed B cell infiltration into the ischemic brain after stroke. Importantly, lymphocyte infiltration after stroke is a long-lasting process. As CD4 depletion improved cognitive functions in an experimental set-up, these findings set the stage to elaborate more specific immune modulating therapies in treating PSCI.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Linfocitos B , Encéfalo , Linfocitos T CD4-Positivos , Femenino , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T
7.
J Neurosci ; 35(20): 7777-94, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995466

RESUMEN

Stroke-induced immunodepression (SIDS) is an essential cause of poststroke infections. Pharmacological inhibition of SIDS appears promising in preventing life-threatening infections in stroke patients. However, SIDS might represent an adaptive mechanism preventing autoreactive immune responses after stroke. To address this, we used myelin oligodendrocyte glycoprotein (MOG) T-cell receptor transgenic (2D2) mice where >80% of peripheral CD4(+) T cells express a functional receptor for MOG. We investigated in a murine model of middle cerebral artery occlusion the effect of blocking SIDS by inhibiting body's main stress axes, the sympathetic nervous system (SNS) with propranolol and the hypothalamic-pituitary-adrenal axis (HPA) with mifepristone. Blockade of both stress axes robustly reduced infarct volumes, decreased infection rate, and increased long-term survival of 2D2 and C57BL/6J wild-type mice. Despite these protective effects, blockade of SIDS increased CNS antigen-specific Type1 T helper cell (Th1) responses in the brains of 2D2 mice 14 d after middle cerebral artery occlusion. One month after experimental stroke, 2D2 mice developed signs of polyradiculitis, which were diminished by SIDS blockade. Adoptive transfer of CD4(+) T cells, isolated from 2D2 mice, into lymphocyte-deficient Rag-1KO mice did not reveal differences between SIDS blockade and vehicle treatment in functional long-term outcome after stroke. In conclusion, inhibiting SIDS by pharmacological blockade of body's stress axes increases autoreactive CNS antigen-specific T-cell responses in the brain but does not worsen functional long-term outcome after experimental stroke, even in a mouse model where CNS antigen-specific autoreactive T-cell responses are boosted.


Asunto(s)
Autoinmunidad , Encefalomielitis Autoinmune Experimental/inmunología , Infarto de la Arteria Cerebral Media/inmunología , Glicoproteína Mielina-Oligodendrócito/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/genética , Células TH1/inmunología , Células TH1/metabolismo
8.
Stroke ; 47(5): 1354-63, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27056982

RESUMEN

BACKGROUND AND PURPOSE: Antibiotics disturbing microbiota are often used in treatment of poststroke infections. A bidirectional brain-gut microbiota axis was recently suggested as a modulator of nervous system diseases. We hypothesized that gut microbiota may be an important player in the course of stroke. METHODS: We investigated the outcome of focal cerebral ischemia in C57BL/6J mice after an 8-week decontamination with quintuple broad-spectrum antibiotic cocktail. These microbiota-depleted animals were subjected to 60 minutes middle cerebral artery occlusion or sham operation. Infarct volume was measured using magnetic resonance imaging, and mice were monitored clinically throughout the whole experiment. At the end point, tissues were preserved for further analysis, comprising histology and immunologic investigations using flow cytometry. RESULTS: We found significantly decreased survival in the middle cerebral artery occlusion microbiota-depleted mice when the antibiotic cocktail was stopped 3 days before surgery (compared with middle cerebral artery occlusion specific pathogen-free and sham-operated microbiota-depleted mice). Moreover, all microbiota-depleted animals in which antibiotic treatment was terminated developed severe acute colitis. This phenotype was rescued by continuous antibiotic treatment or colonization with specific pathogen-free microbiota before surgery. Further, infarct volumes on day one did not differ between any of the experimental groups. CONCLUSIONS: Conventional microbiota ensures intestinal protection in the mouse model of experimental stroke and prevents development of acute and severe colitis in microbiota-depleted mice not given antibiotic protection after cerebral ischemia. Our experiments raise the clinically important question as to whether microbial colonization or specific microbiota are crucial for stroke outcome.


Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Accidente Cerebrovascular/microbiología , Animales , Femenino , Infarto de la Arteria Cerebral Media/microbiología , Ratones , Ratones Endogámicos C57BL
9.
Stroke ; 46(11): 3232-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26451017

RESUMEN

BACKGROUND AND PURPOSE: Temporary immunosuppression has been identified as a major risk factor for the development of pneumonia after acute central nervous system injury. Although overactivation of the sympathetic nervous system was previously shown to mediate suppression of systemic cellular immune responses after stroke, the role of the parasympathetic cholinergic anti-inflammatory pathway in the antibacterial defense in lung remains largely elusive. METHODS: The middle cerebral artery occlusion model in mice was used to examine the influence of the parasympathetic nervous system on poststroke immunosuppression. We used heart rate variability measurement by telemetry, vagotomy, α7 nicotinic acetylcholine receptor-deficient mice, and parasympathomimetics (nicotine, PNU282987) to measure and modulate parasympathetic activity. RESULTS: Here, we demonstrate a rapidly increased parasympathetic activity in mice after experimental stroke. Inhibition of cholinergic signaling by either vagotomy or by using α7 nicotinic acetylcholine receptor-deficient mice reversed pulmonary immune hyporesponsiveness and prevented pneumonia after stroke. In vivo and ex vivo studies on the role of α7 nicotinic acetylcholine receptor on different lung cells using bone marrow chimeric mice and isolated primary cells indicated that not only macrophages but also alveolar epithelial cells are a major cellular target of cholinergic anti-inflammatory signaling in the lung. CONCLUSIONS: Thus, cholinergic pathways play a pivotal role in the development of pulmonary infections after acute central nervous system injury.


Asunto(s)
Inmunidad Innata/inmunología , Infarto de la Arteria Cerebral Media/inmunología , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Neumonía/inmunología , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Líquido del Lavado Bronquioalveolar/microbiología , Modelos Animales de Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/inmunología , Inmunidad Innata/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Macrófagos Alveolares/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Sistema Nervioso Parasimpático/efectos de los fármacos , Sistema Nervioso Parasimpático/inmunología , Parasimpaticomiméticos/farmacología , Neumonía/microbiología , Receptores Nicotínicos/genética , Receptores Nicotínicos/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Transducción de Señal , Accidente Cerebrovascular/inmunología , Vagotomía
10.
Mol Metab ; 79: 101856, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141848

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS: Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS: Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator ß-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION: Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Lisina , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Oléico , Perilipina-2
11.
Int Rev Neurobiol ; 164: 27-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36038206

RESUMEN

The importance of sex differences in neurological disorders has been increasingly acknowledged in recent clinical and basic research studies, but the complex biology and genetics underlying sex-linked biological heterogeneity and its brain-to-body impact remained incompletely understood. Men and women differ substantially in their susceptibility to certain neurological diseases, in the severity of symptoms, prognosis as well as the nature and efficacy of their response to treatments. The detailed mechanisms underlying these differences, especially at the molecular level, are being addressed in many studies but leave a lot to be further revealed. Here, we provide an overview of recent advances in our understanding of how sex differences in the brain and brain-body signaling contribute to neurological disorders and further present some future prospects entailed in terms of diagnostics and therapeutics.


Asunto(s)
Enfermedades del Sistema Nervioso , Caracteres Sexuales , Encéfalo , Femenino , Humanos , Masculino
12.
Adv Sci (Weinh) ; 9(4): e2103265, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34904402

RESUMEN

Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Calcio/metabolismo , Glicolatos/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/prevención & control , Animales , Isquemia Encefálica/metabolismo , Desecación , Modelos Animales de Enfermedad , Glicolatos/administración & dosificación , Glicolatos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/metabolismo , Daño por Reperfusión/metabolismo , Porcinos
13.
Sci Rep ; 11(1): 6072, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727568

RESUMEN

Recently, several genome-wide association studies identified PHACTR1 as key locus for five diverse vascular disorders: coronary artery disease, migraine, fibromuscular dysplasia, cervical artery dissection and hypertension. Although these represent significant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL-like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by different degrees of PcomAs patency. We report 3 very rare coding variants in the small vessel ischemic disease-CADASIL-like cohort (p.Glu198Gln, p.Arg204Gly, p.Val251Leu) and a stop-gain mutation (p.Gln273*) in one MCAO mouse. These coding variants do not cluster in PHACTR1 known pathogenic domains and are not likely to play a critical role in small vessel ischemic disease or brain collateral circulation. We also exclude the possibility that copy number variants (CNVs) or a variant enrichment in Phactr1 may be associated with PcomA recruitment in BCCAS mice or linked to diverse vascular traits (cerebral blood flow pre-surgery, PcomA size, leptomeningeal microcollateral length and junction density during brain hypoperfusion) in C57BL/6J mice, respectively. Genetic variability in PHACTR1 is not likely to be a common susceptibility factor influencing small vessel ischemic disease in patients and PcomA recruitment in C57BL/6J mice. Nonetheless, rare variants in PHACTR1 RPEL domains may influence the stroke outcome and are worth investigating in a larger cohort of small vessel ischemic disease patients, different ischemic stroke subtypes and with functional studies.


Asunto(s)
Isquemia Encefálica , Proteínas de Microfilamentos , Mutación Missense , Accidente Cerebrovascular , Anciano , Sustitución de Aminoácidos , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
14.
Vaccines (Basel) ; 8(2)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481512

RESUMEN

Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.

15.
J Cereb Blood Flow Metab ; 40(2): 276-287, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31549895

RESUMEN

Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size.


Asunto(s)
Isquemia Encefálica , Arterias Cerebrales , Circulación Cerebrovascular , Angiografía por Resonancia Magnética , Accidente Cerebrovascular , Animales , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/fisiopatología , Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/fisiopatología , Modelos Animales de Enfermedad , Ratones , Enfermedades de la Retina/diagnóstico por imagen , Enfermedades de la Retina/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología
16.
Med Dosw Mikrobiol ; 61(3): 221-6, 2009.
Artículo en Polaco | MEDLINE | ID: mdl-20120924

RESUMEN

The profiles of resistance of ESBL(-) and ESBL(+) strains of Enterobacter cloacae were analysed and compared. 466 Enterobacter cloacae strains isolated from different specimens obtained from patients of big Warsaw hospital in 2004-2005 were investigated. By using the several phenotypic methods 33.5% of strains was identified as ESBL(+). ESBL(+) strains were significantly less susceptible then ESBL(-). These two groups differed mostly in susceptibility to aminoglycosides and fluoroquinolones, e.g. 65.5% of ESBL(-) strains were susceptible to gentamicin, compared to only 25.0% ESBL(+), in case of ciprofloxacin 59.0% of ESBL(-) were susceptible whereas only 25.0% of ESBL(+) strains. The percentage of ESBL(+) grew from 26.4% in 2004 to 40.4% in 2005, whereas a tendency of growing susceptibility to aminoglycosides and fluoroquinolones was noted among all E.cloacae strains. Susceptibility to combinations of piperacillin or ticarcillin with beta-lactamase inhibitor was rather low among ESBL(+) strains.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Enterobacter cloacae/efectos de los fármacos , Infección Hospitalaria/microbiología , Enterobacter cloacae/enzimología , Humanos , Pruebas de Sensibilidad Microbiana , Polonia , beta-Lactamasas/metabolismo
17.
Front Neurosci ; 13: 728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396030

RESUMEN

Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.

18.
Med Dosw Mikrobiol ; 60(1): 51-8, 2008.
Artículo en Polaco | MEDLINE | ID: mdl-18634344

RESUMEN

The susceptibility to cefoperazone/sulbactam of 197 strains of Gram-negative rods demonstrating an ESBL-positive phenotype was determined. The assortment of the investigated strains was as follows (numbers of strains are given in the brackets): E. cloacae (63), S. marcescens (46), K. pneumoniae (21), P. mirabilis (17), E. coli (9), P. vulgaris (8), P. aeruginosa (20) and A. baumanni (13). 83 strains from 197 were susceptible (42.1%). The MIC values were determined and the disc-diffusion method was performed. The susceptibilities among particular species were as follows (the order of data in the brackets is: % of the susceptible strains/MIC50/MIC90): E. cloacae (54.0/16/64), S. marcescens (23.9/64/> or = 128), K. pneumoniae (38.1/32/64), P. mirabilis (41.2/32/64), E. coli (44.4/32/32), P. vulgaris (75.0/8/32), P. aeruginosa (35.0/32/64), A. baumannii (46.2/32/64). Using disc-diffusion method, for 184 strains the difference between diameter of the inhibition zone around the disc with cefoperazone and the disc with cefoperazone/sulbactam was calculated. This difference amounted 5 mm or more in the case of 76.6% of the investigated strains. The results indicate that the comparison of the inhibition zones around cefoperazone and cefoperazone/sulbactam discs may be an additional method useful for phenotypic detection of ESBL producing organisms. These results highly correlated with results obtained by using analogous test with cefpirome and cefpirome/clavulanic acid (85.6% of concordance).


Asunto(s)
Antiinfecciosos/farmacología , Cefoperazona/farmacología , Resistencia a las Cefalosporinas , Farmacorresistencia Bacteriana Múltiple , Bacilos y Cocos Aerobios Gramnegativos/efectos de los fármacos , Sulbactam/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Humanos , beta-Lactamasas/biosíntesis
19.
J Neuroimmunol ; 321: 144-149, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29576323

RESUMEN

Stroke-induced immunodepression is an independent risk factor for stroke-associated pneumonia (SAP). Granulocyte-macrophage colony stimulating factor (GM-CSF) has neuroprotective properties in experimental stroke and been demonstrated to reverse immunodepression in sepsis patients. However, whether GM-CSF restores immune function after stroke preventing SAP and improving outcome is unknown. Here, we demonstrated that GM-CSF treatment improved peripheral and pulmonary leukocyte numbers, peripheral cytokine responses, lowered lung bacterial burden in the early course and improved long-term functional outcome after experimental stroke. These data suggest that GM-CSF is promising for stroke treatment since it not only acts neuroprotective in the ischemic brain but may also protect against detrimental post-stroke infections.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Pulmón/inmunología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/inmunología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/inmunología , Animales , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/inmunología , Factores Inmunológicos/administración & dosificación , Pulmón/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/etiología , Accidente Cerebrovascular/complicaciones , Resultado del Tratamiento
20.
Front Neurol ; 9: 937, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510535

RESUMEN

Background and Purpose: The gut communicates with the brain bidirectionally via neural, humoral and immune pathways. All these pathways are affected by acute brain lesions, such as stroke. Brain-gut communication may therefore impact on the overall outcome after CNS-injury. Until now, contradictory reports on intestinal function and translocation of gut bacteria after experimental stroke have been published. Accordingly, we aimed to specifically investigate the effects of transient focal cerebral ischemia on intestinal permeability, gut associated lymphoid tissue and bacterial translocation in an exploratory study using a well-characterized murine stroke model. Methods: After 60 min of middle cerebral artery occlusion (MCAO) we assessed intestinal morphology (time points after surgery day 0, 3, 5, 14, 21) and tight junction protein expression (occludin and claudin-1 at day 1 and 3) in 12-week-old male C57Bl/6J mice. Lactulose/mannitol/sucralose test was performed to assess intestinal permeability 24-72 h after surgery. To investigate the influence of cerebral ischemia on the local immune system of the gut, main immune cell populations in Peyer's patches (PP) were quantified by flow cytometry. Finally, we evaluated bacterial translocation to extraintestinal organs 24 and 72 h after MCAO by microbiological culture and fluorescence in situ hybridization targeting bacterial 16S rRNA. Results: Transient MCAO decreased claudin-1 expression in the ileum but not in the colon. Intestinal morphology (assessed by light microscopy) and permeability did not change measurably after MCAO. After MCAO, animals had significantly fewer B cells in PP compared to naïve mice. Conclusions: In a murine model of stroke, which leads to large brain infarctions in the middle cerebral artery territory, we did not find evidence for overt alterations neither in gut morphology, barrier proteins and permeability nor presence of intestinal bacterial translocation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA