Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(3): 447-456.e11, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026151

RESUMEN

The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or individuals vaccinated with the BioNTech-Pfizer vaccine (BNT162b2) with 12- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1 (Astra Zeneca-Oxford)/BNT162b2 vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunidad Adaptativa , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Masculino , Unión Proteica , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunación , Células Vero
2.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794143

RESUMEN

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Línea Celular , Farmacorresistencia Viral , Humanos , Inmunización Pasiva , Cinética , Fusión de Membrana , Modelos Moleculares , Pruebas de Neutralización , Serina Endopeptidasas/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Internalización del Virus , Sueroterapia para COVID-19
3.
Eur J Anaesthesiol ; 40(6): 436-441, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052059

RESUMEN

BACKGROUND: Measuring cardiac output (CO) is important in patients treated with veno-venous extracorporeal membrane oxygenation (vvECMO) because vvECMO flow and CO need to be balanced. Uncalibrated pulse wave analysis with the Pressure Recording Analytical Method (PRAM) may be suitable to measure CO in patients with vvECMO therapy. OBJECTIVE: To assess the agreement between CO measured by PRAM (PRAM-CO; test method) and CO measured by transthoracic echocardiography (TTE-CO; reference method). DESIGN: A prospective observational method comparison study. SETTING: The ICU of a German university hospital between March and December 2021. PATIENTS: Thirty one adult patients with respiratory failure requiring vvECMO therapy: 29 of the 31 patients (94%) were treated for COVID-19 related respiratory failure. MAIN OUTCOME MEASURES: PRAM-CO and TTE-CO were measured simultaneously at two time points in each patient with at least 20 min between measurements. A radial or femoral arterial catheter-derived blood pressure waveform was used for PRAM-CO measurements. TTE-CO measurements were conducted using the pulsed wave Doppler-derived velocity time integral of the left ventricular outflow tract (LVOT) and the corresponding LVOT diameter. PRAM-CO and TTE-CO were compared using Bland-Altman analysis and the percentage error (PE). We defined a PE of <30% as clinically acceptable. RESULTS: Mean ±â€ŠSD PRAM-CO was 6.86 ±â€Š1.49 l min -1 and mean TTE-CO was 6.94 ±â€Š1.58 l min -1 . The mean of the differences between PRAM-CO and TTE-CO was 0.09 ±â€Š0.73 l min -1 with a lower 95% limit of agreement of -1.34 l min -1 and an upper 95% limit of agreement of 1.51 l min -1 . The PE was 21%. CONCLUSIONS: The agreement between PRAM-CO and TTE-CO is clinically acceptable in adult patients with vvECMO therapy.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Adulto , Humanos , Ecocardiografía/métodos , Gasto Cardíaco/fisiología , Presión Arterial , Reproducibilidad de los Resultados
4.
Crit Care ; 26(1): 308, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209188

RESUMEN

The 40-year-old experience with glucocorticosteroids (GCs) in the context of severe infections is complex and troublesome. Recently, however, a clear indication for GCs in severe COVID-19 has been established. This may constitute a harbinger of a wider use of GCs in critical illnesses. A fundamental prerequisite of such an action is a better understanding of the heterogeneity of critical illness and GCs operationalization within the precision medicine approach. In this perspective, we formulate ten major questions regarding the use of GCs in critical illness. Answering them will likely facilitate a new era of effective and personalized GCs use in modern critical care.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glucocorticoides , Adulto , Cuidados Críticos , Enfermedad Crítica/terapia , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Humanos
5.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430535

RESUMEN

Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/genética , Proteínas del Envoltorio Viral/genética , Vacuna BNT162 , Glicoproteínas de Membrana/metabolismo
6.
Clin Infect Dis ; 73(11): 2000-2008, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34134134

RESUMEN

BACKGROUND: Vaccine-induced neutralizing antibodies are key in combating the coronavirus disease 2019 (COVID-19) pandemic. However, delays of boost immunization due to limited availability of vaccines may leave individuals vulnerable to infection and prolonged or severe disease courses. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC)-B.1.1.7 (United Kingdom), B.1.351 (South Africa), and P.1 (Brazil)-may exacerbate this issue, as the latter two are able to evade control by antibodies. METHODS: We assessed humoral and T-cell responses against SARS-CoV-2 wild-type (WT), VOC, and endemic human coronaviruses (hCoVs) that were induced after single and double vaccination with BNT162b2. RESULTS: Despite readily detectable immunoglobulin G (IgG) against the receptor-binding domain of the SARS-CoV-2 S protein at day 14 after a single vaccination, inhibition of SARS-CoV-2 S-driven host cell entry was weak and particularly low for the B.1.351 variant. Frequencies of SARS-CoV-2 WT and VOC-specific T cells were low in many vaccinees after application of a single dose and influenced by immunity against endemic hCoV. The second vaccination significantly boosted T-cell frequencies reactive for WT and B.1.1.7 and B.1.351 variants. CONCLUSIONS: These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.


Asunto(s)
Vacuna BNT162/inmunología , COVID-19 , Inmunidad Celular , Inmunidad Humoral , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/prevención & control , Humanos , Inmunoglobulina G/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación
8.
Cell Mol Immunol ; 19(3): 449-452, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34983951

RESUMEN

Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Humanos , Mutación/inmunología , Pruebas de Neutralización/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus
9.
mBio ; 13(3): e0036422, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35467423

RESUMEN

SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy. IMPORTANCE The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales , COVID-19/terapia , Línea Celular , Chlorocebus aethiops , Humanos , Mutación , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
10.
Cell Rep ; 39(5): 110754, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35477025

RESUMEN

Rapid spread of SARS-CoV-2 variants C.1.2 and B.1.621 (Mu variant) in Africa and the Americas, respectively, as well as a high number of mutations in the viral spike proteins raised concerns that these variants might pose an elevated threat to human health. Here, we show that C.1.2 and B.1.621 spike proteins mediate increased entry into certain cell lines but do not exhibit increased ACE2 binding. Further, we demonstrate that C.1.2 and B.1.621 are resistant to neutralization by bamlanivimab but remain sensitive to inhibition by antibody cocktails used for COVID-19 therapy. Finally, we show that C.1.2 and B.1.621 partially escape neutralization by antibodies induced upon infection and vaccination, with escape of vaccine-induced antibodies being as potent as that measured for B.1.351 (Beta variant), which is known to be highly neutralization resistant. Collectively, C.1.2 and B.1.621 partially evade control by vaccine-induced antibodies, suggesting that close monitoring of these variants is warranted.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus , Vacunación
11.
Biomedicines ; 9(12)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34944657

RESUMEN

In critically ill patients, liver dysfunction often results in coagulopathy and encephalopathy and is associated with high mortality. Extracorporeal clearance of hepatotoxic metabolites, including bilirubin and ammonia, aims to attenuate further hepatocyte damage and liver injury, resulting in decreased mortality. The efficacy of hemadsorption combined with conventional hemodialysis to eliminate bilirubin and ammonia to support the liver's excretory function in acute liver injury has been described previously. However, the optimal use of liver support systems in chronic liver dysfunction due to secondary sclerosing cholangitis in critically ill patients (SSC-CIP) has not been defined yet. We herein describe the kinetics of successful bilirubin and ammonia elimination by hemadsorption in a patient with SSC-CIP after extracorporeal membrane oxygenation (ECMO) therapy for severe acute respiratory distress syndrome (ARDS) in a patient with coronavirus disease 2019 (COVID-19). During the course of the disease, the patient developed laboratory signs of liver injury during ECMO therapy before clinically detectable jaundice or elevated bilirubin levels. A diagnosis of SSC-CIP was confirmed by endoscopic retrograde cholangiopancreatography (ERCP) based on intraductal filling defects in the intrahepatic bile ducts due to biliary casts. The patient showed stable elevations of bilirubin and ammonia levels thereafter, but presented with progressive nausea, vomiting, weakness, and exhaustion. Based on these laboratory findings, hemadsorption was combined with hemodialysis treatment and successfully eliminated bilirubin and ammonia. Moreover, direct comparison revealed that ammonia is more efficiently eliminated by hemadsorption than bilirubin levels. Clinical symptoms of nausea, vomiting, weakness, and exhaustion improved. In summary, bilirubin and ammonia were successfully eliminated by hemadsorption combined with hemodialysis treatment in SSC-CIP following ECMO therapy and severe COVID-19. This observation is particularly relevant since it has been reported that a considerable subset of critically ill patients with COVID-19 suffer from liver dysfunction associated with high mortality.

12.
Scand J Trauma Resusc Emerg Med ; 29(1): 155, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717713

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious airborne virus inducing pandemic coronavirus disease 2019 (COVID-19). This is most relevant for medical staff working under harmful conditions in emergencies often dealing with patients and an undefined SARS-CoV-2 status. We aimed to measure the effect of high-class filtering facepieces (FFP) in emergency medical service (EMS) staff by analyzing seroprevalence and history of positive polymerase chain reaction (PCR) for SARS-CoV-2. METHOD: This observational cohort study included workers in EMS, who were compared with hospital staff (HS) and staff, which was not directly involved in patient care (NPC). All direct patient contacts of EMS workers were protected by FFP2/N95 (filtering face piece protection class 2/non-oil-based particulates filter efficiency 95%) masks, whereas HS was protected by FFP2/N95 exclusively when a patient had a proven or suspected SARS-CoV-2 infection. NPC was not protected by higher FFP. The seroprevalence of SARS-CoV-2 antibodies was analyzed by immunoassay by end of 12/2020 together with the history of a positive PCR. In addition, a self-assessment was performed regarding the quantity of SARS-CoV-2 positive contacts, about flu symptoms and personal belief of previous COVID-19 infections. RESULTS: The period in which contact to SARS-CoV-2 positive patients has been possible was 10 months (March to December 2020)-with 54,681 patient contacts documented for EMS-either emergencies (n = 33,241) or transportation services (n = 21,440). Seven hundred-thirty (n = 730) participants were included into the study (n = EMS: 325, HS: 322 and NPC: 83). The analysis of the survey showed that the exposure to patients with an unknown and consecutive positive SARS-CoV-2 result was significantly higher for EMS when compared to HS (EMS 55% vs. HS 30%, p = 0.01). The incidence of a SARS-CoV-2 infection in our cohort was 1.2% (EMS), 2.2% (HS) and 2.4% (NPC) within the three groups (ns) and lowest in EMS. Furthermore, the belief of previous COVID-19 was significant higher in EMS (19% vs. 10%), CONCLUSION: The consistent use of FFP2/N95 in EMS is able to prevent work-related SARS-CoV-2 infections in emergency situations. The significance of physical airway protection in exposed medical staff is still relevant especially under the aspect of new viral variants and unclear effectiveness of new vaccines.


Asunto(s)
COVID-19 , Urgencias Médicas , Estudios de Cohortes , Personal de Salud , Humanos , SARS-CoV-2 , Estudios Seroepidemiológicos
13.
Cell Rep ; 37(2): 109825, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34614392

RESUMEN

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), B.1.617.2, emerged in India and has spread to over 80 countries. B.1.617.2 replaced B.1.1.7 as the dominant virus in the United Kingdom, resulting in a steep increase in new infections, and a similar development is expected for other countries. Effective countermeasures require information on susceptibility of B.1.617.2 to control by antibodies elicited by vaccines and used for coronavirus disease 2019 (COVID-19) therapy. We show, using pseudotyping, that B.1.617.2 evades control by antibodies induced upon infection and BNT162b2 vaccination, although to a lesser extent as compared to B.1.351. We find that B.1.617.2 is resistant against bamlanivimab, a monoclonal antibody with emergency use authorization for COVID-19 therapy. Finally, we show increased Calu-3 lung cell entry and enhanced cell-to-cell fusion of B.1.617.2, which may contribute to augmented transmissibility and pathogenicity of this variant. These results identify B.1.617.2 as an immune evasion variant with increased capacity to enter and fuse lung cells.


Asunto(s)
COVID-19/inmunología , Evasión Inmune/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19/metabolismo , COVID-19/terapia , Vacunas contra la COVID-19/inmunología , Fusión Celular , Línea Celular , Femenino , Células HEK293 , Humanos , Evasión Inmune/fisiología , Inmunización Pasiva/métodos , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Sueroterapia para COVID-19
14.
Front Immunol ; 12: 784989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987511

RESUMEN

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


Asunto(s)
COVID-19/metabolismo , Ceramidas/metabolismo , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Antiinflamatorios/uso terapéutico , COVID-19/virología , Ceramidas/sangre , Activación Enzimática , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Ácidos Grasos/metabolismo , Humanos , Unidades de Cuidados Intensivos , Gravedad del Paciente , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/sangre , Esfingomielinas/metabolismo , Tratamiento Farmacológico de COVID-19
15.
Cell Rep ; 36(3): 109415, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270919

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.


Asunto(s)
Enzima Convertidora de Angiotensina 2/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Línea Celular , Humanos , Inhibidores de Proteasas/farmacología , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
16.
EBioMedicine ; 66: 103291, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33813139

RESUMEN

Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19 , COVID-19/etiología , Modelos Animales de Enfermedad , SARS-CoV-2/genética , Factores de Edad , Animales , Antivirales/farmacología , COVID-19/fisiopatología , COVID-19/terapia , Vacunas contra la COVID-19/farmacología , Ensayos Clínicos como Asunto , Cricetinae , Hurones , Humanos , Ratones , Mutación , Primates
17.
Lancet Respir Med ; 9(6): 622-642, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33965003

RESUMEN

The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.


Asunto(s)
COVID-19 , Insuficiencia Multiorgánica , SARS-CoV-2/patogenicidad , COVID-19/inmunología , COVID-19/fisiopatología , Endotelio/fisiopatología , Humanos , Inmunidad , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/fisiopatología , Gravedad del Paciente , Índice de Severidad de la Enfermedad
18.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33257876

RESUMEN

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Asunto(s)
Encéfalo/virología , COVID-19/virología , Mucosa Olfatoria/virología , SARS-CoV-2/patogenicidad , Sistema Nervioso Central , Humanos , ARN Viral/genética , Olfato/fisiología , Internalización del Virus
19.
EBioMedicine ; 58: 102898, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32711251

RESUMEN

BACKGROUND: One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. METHODS: Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. FINDINGS: Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. INTERPRETATION: Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. FUNDING: This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).


Asunto(s)
Aldehído-Liasas/metabolismo , Epirrubicina/administración & dosificación , Sepsis/tratamiento farmacológico , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Autofagia , Permeabilidad de la Membrana Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Epirrubicina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Mucina-1/metabolismo , Estudios Prospectivos , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Distribución Aleatoria , Sepsis/etiología , Sepsis/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Resultado del Tratamiento , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Biomark Med ; 12(2): 119-127, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29327601

RESUMEN

AIM: Sepsis is a serious complication following surgery and identification of patients at risk is of high importance. Syndecan-1 (sSDC1) levels are known to be elevated during sepsis. MATERIALS & METHODS: Fifty-five patients scheduled for major abdominal surgery were prospectively included and sSDC1 concentrations were measured during hospital stay. RESULTS: Patients with postoperative sepsis showed a continued increase of sSDC1 levels and exhibited higher median sSDC1 concentrations at day 1 compared with nonseptic patients 90.3 versus 16.5 ng/ml. A significant association of sSDC1 levels with the incidence of sepsis and death was demonstrated. CONCLUSION: This study identifies sSDC1 as potential biomarker for sepsis and survival after abdominal surgery.


Asunto(s)
Abdomen/cirugía , Biomarcadores/sangre , Sepsis/diagnóstico , Sindecano-1/sangre , Anciano , Área Bajo la Curva , Proteína C-Reactiva/análisis , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Unidades de Cuidados Intensivos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias , Estudios Prospectivos , Curva ROC , Sepsis/etiología , Sepsis/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA