Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; 62(14): e202217171, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36748955

RESUMEN

The outbreak of COVID-19 in December 2019 required the formation of international consortia for a coordinated scientific effort to understand and combat the virus. In this Viewpoint Article, we discuss how the NMR community has gathered to investigate the genome and proteome of SARS-CoV-2 and tested them for binding to low-molecular-weight binders. External factors including extended lockdowns due to the global pandemic character of the viral infection triggered the transition from locally focused collaborative research conducted within individual research groups to digital exchange formats for immediate discussion of unpublished results and data analysis, sample sharing, and coordinated research between more than 50 groups from 18 countries simultaneously. We discuss key lessons that might pertain after the end of the pandemic and challenges that we need to address.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Control de Enfermedades Transmisibles , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética
2.
J Am Chem Soc ; 143(16): 6185-6193, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33872503

RESUMEN

The folding of DNA G-quadruplexes (G4) is essential to regulate expression of oncogenes and involves polymorphic long-lived intermediate states. G4 formation requires four G-tracts, but human gene-promoters often contain multiple G-tracts that act as spare-tires. These additional G-tracts are highly conserved and add multiple layers of functional complexity, as they are crucial to maintain G4 function after oxidative damage. Herein, we unravel the folding dynamics of the G4 sequence containing five G-tracts from cMYC, the major proliferation-driving oncogene. We devise a general method to induce folding at constant experimental conditions using a photochemical trapping strategy. Our data dissect the individual kinetics and thermodynamics of the spare-tire mechanism of cMYC-G4.


Asunto(s)
G-Cuádruplex , Humanos , Isomerismo , Cinética , Conformación de Ácido Nucleico , Proteínas Proto-Oncogénicas c-myc/genética , Termodinámica
3.
J Am Chem Soc ; 143(13): 4942-4948, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783202

RESUMEN

Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled 1H-15N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both 15N-1H and 1H-1H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.


Asunto(s)
Fenómenos Magnéticos , Espectroscopía de Resonancia Magnética , ARN Viral/química , SARS-CoV-2/genética , Temperatura
4.
Chembiochem ; 22(2): 423-433, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32794266

RESUMEN

We report here the nuclear magnetic resonance 19 F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.


Asunto(s)
ADN/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas/metabolismo , ARN/metabolismo , ADN/química , Flúor/química , Peso Molecular , Proteínas/química , ARN/química
5.
Angew Chem Int Ed Engl ; 60(21): 11884-11891, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33683819

RESUMEN

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Protones , ARN Viral/análisis , SARS-CoV-2/química , Fenómenos Magnéticos , ARN Viral/química
6.
Angew Chem Int Ed Engl ; 60(35): 19191-19200, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34161644

RESUMEN

SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.


Asunto(s)
Genoma , ARN Viral/metabolismo , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequeñas/metabolismo , Evaluación Preclínica de Medicamentos , Ligandos , Estructura Molecular , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética , ARN Viral/química , Bibliotecas de Moléculas Pequeñas/química
7.
Angew Chem Int Ed Engl ; 56(25): 7102-7106, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28524432

RESUMEN

Telomeric G-quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G-quadruplex that adopts the biologically relevant hybrid-2 conformation in a ligand-bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G-quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G-quadruplex. The ligand is sandwiched between one terminal G-tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G-quadruplex structure as observed for other G-quadruplexes in different conformations, invalidating simple docking approaches to ligand-G-quadruplex structure determination.


Asunto(s)
ADN/química , G-Cuádruplex , Sustancias Macromoleculares/química , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética/métodos , Sitios de Unión , Oro/química , Humanos , Ligandos , Compuestos Organometálicos/química , Telómero
8.
Angew Chem Int Ed Engl ; 55(18): 5376-7, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26990154

RESUMEN

Tied up in knots: The crystal structure of a DNA enzyme in its post-catalytic state was solved. The results provide insight into the structural possibilities for DNA and the mechanism of DNA catalysis.


Asunto(s)
ADN Catalítico/química , Dominio Catalítico , Cristalografía por Rayos X , ADN Catalítico/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/metabolismo
9.
Nucleic Acids Res ; 39(22): 9768-78, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21890900

RESUMEN

Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop-loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gsw(loop)) in the absence of Mg(2+). However, if Mg(2+) is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop-loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gsw(loop) is tunable through variation of the Mg(2+) concentration. We quantitatively describe the influence of distinct Mg(2+) concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.


Asunto(s)
Guanina/química , Magnesio/química , Riboswitch , Cristalografía por Rayos X , Cinética , Ligandos , Biología Molecular , Mutación , Conformación de Ácido Nucleico , ARN/química , Pliegue del ARN
10.
Biochemistry ; 51(16): 3361-72, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22468860

RESUMEN

The conformational analysis of non-native states of proteins remains one of the most difficult problems in structural biology, because such states are represented by a superimposition of several states that are rapidly interconverting. Hence, model building of the conformational ensemble remains challenging, although many different biophysical observables can be determined in non-native states of proteins. Here, we present a comprehensive analysis of non-native states of wild-type and mutant forms of the model protein lysozyme by nuclear magnetic resonance spectroscopy. Relaxation rates, chemical shifts, backbone and side chain coupling constants, residual dipolar couplings, diffusion rate constants, and small-angle scattering data merged with computational approaches, such as flexible meccano and ASTEROIDS, allow the description of the non-native state of hen egg white lysozyme in unprecedented detail.


Asunto(s)
Muramidasa/química , Clara de Huevo , Muramidasa/genética , Muramidasa/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Resonancia Magnética Nuclear Biomolecular , Desnaturalización Proteica , Pliegue de Proteína
11.
J Am Chem Soc ; 134(15): 6846-54, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22414027

RESUMEN

During oxidative folding, the formation of disulfide bonds has profound effects on guiding the protein folding pathway. Until now, comparatively little is known about the changes in the conformational dynamics in folding intermediates of proteins that contain only a subset of their native disulfide bonds. In this comprehensive study, we probe the conformational landscape of non-native states of lysozyme containing a single native disulfide bond utilizing nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), circular dichroism (CD) data, and modeling approaches. The impact on conformational dynamics varies widely depending on the loop size of the single disulfide variants and deviates significantly from random coil predictions for both NMR and SAXS data. From these experiments, we conclude that the introduction of single disulfides spanning a large portion of the polypeptide chain shifts the structure and dynamics of hydrophobic core residues of the protein so that these regions exhibit levels of order comparable to the native state on the nanosecond time scale.


Asunto(s)
Disulfuros/química , Pliegue de Proteína , Simulación de Dinámica Molecular , Muramidasa/química , Conformación Proteica
12.
Biomol NMR Assign ; 16(1): 17-25, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35178672

RESUMEN

The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Regiones no Traducidas 5' , Humanos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
13.
ChemMedChem ; 16(10): 1667-1679, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33508167

RESUMEN

Lead-optimization strategies for compounds targeting c-Myc G-quadruplex (G4) DNA are being pursued to develop anticancer drugs. Here, we investigate the structure-activity- relationship (SAR) of a newly synthesized series of molecules based on the pyrrolidine-substituted 5-nitro indole scaffold to target G4 DNA. Our synthesized series allows modulation of flexible elements with a structurally preserved scaffold. Biological and biophysical analyses illustrate that substituted 5-nitroindole scaffolds bind to the c-Myc promoter G-quadruplex. These compounds downregulate c-Myc expression and induce cell-cycle arrest in the sub-G1/G1 phase in cancer cells. They further increase the concentration of intracellular reactive oxygen species. NMR spectra show that three of the newly synthesized compounds interact with the terminal G-quartets (5'- and 3'-ends) in a 2 : 1 stoichiometry.


Asunto(s)
Antineoplásicos/farmacología , G-Cuádruplex/efectos de los fármacos , Genes myc/efectos de los fármacos , Indoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
14.
Angew Chem Weinheim Bergstr Ger ; 133(21): 11991-11998, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34230709

RESUMEN

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.

15.
Magn Reson (Gott) ; 2(1): 291-320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37904763

RESUMEN

The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.

16.
Biomol NMR Assign ; 15(1): 203-211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484403

RESUMEN

The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive 1H, 13C and 15N resonance assignment of SL5a as basis for in-depth structural studies by solution NMR spectroscopy.


Asunto(s)
Regiones no Traducidas 5' , Proteasas Similares a la Papaína de Coronavirus/química , Espectroscopía de Resonancia Magnética , SARS-CoV-2/química , SARS-CoV-2/genética , Isótopos de Carbono , Genes Virales , Hidrógeno , Isótopos de Nitrógeno , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
17.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33928512

RESUMEN

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Asunto(s)
Regiones no Traducidas 5' , Resonancia Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Secuencias Invertidas Repetidas/genética
18.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453696

RESUMEN

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Asunto(s)
Regiones no Traducidas 5' , Resonancia Magnética Nuclear Biomolecular , SARS-CoV-2/genética , Conformación de Ácido Nucleico , ARN Lider Empalmado
19.
J Med Chem ; 50(10): 2352-69, 2007 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-17458946

RESUMEN

A series of 2"-O-substituted ether analogues of paromomycin were prepared based on new site-selective functionalizations. X-ray cocrystal complexes of several such analogues revealed a new mode of binding in the A-site rRNA, whereby rings I and II adopted the familiar orientation and position previously observed with paromomycin, but rings III and IV were oriented differently. With few exceptions, all of the new analogues showed potent inhibitory activity equal or better than paromomycin against a sensitive strain of S. aureus. Single digit microM MIC values were obtained against E. coli, with some of the ether appendages containing polar or basic end groups. Two analogues showed excellent survival rate in a mouse septicemia protection assay. Preliminary histopathological analysis of the kidney showed no overt signs of toxicity, while controls with neomycin and kanamycin were toxic at lower doses.


Asunto(s)
Antibacterianos/síntesis química , Paromomicina/análogos & derivados , Paromomicina/síntesis química , ARN Ribosómico/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Éteres/síntesis química , Éteres/química , Éteres/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Paromomicina/química , Paromomicina/farmacología , Sepsis/prevención & control , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA