RESUMEN
The synthesis and original thermoresponsive behavior of hybrid diblock copolypeptides composed of synthetic and recombinant polypeptides are herein reported. A thermoresponsive recombinant elastin-like polypeptide was used as a macroinitiator to synthesize a range of poly( l-glutamic acid)- block-elastin-like polypeptide (PGlu- b-ELP) diblock copolypeptides with variable PGlu block lengths. Their temperature-triggered self-assembly in water and in phosphate-buffered saline (PBS) was investigated at the macroscopic scale using complementary techniques such as turbidimetry, dynamic and static light scattering, small-angle neutron scattering, and at the molecular scale by 1H NMR and circular dichroism (CD). In deionized water, PGlu- b-ELP copolypeptides showed one transition from free soluble chains below the transition temperature ( Tt) of the ELP block to macroscopic aggregates above the Tt. In contrast, in PBS, four successive regimes were observed upon increasing temperature: below the Tt, copolypeptides were soluble, above the Tt, large aggregates appeared and fell apart into discrete and defined spherical nanoparticles at a temperature named critical micellization temperature (CMT), before finally reaching an equilibrium. During the last regime, neutron scattering experiments revealed that the micelle-like structures underwent a densification step and expelled water from their core. In addition, 1H NMR and CD experiments revealed, in deionized water, the formation of type II ß-turns into the ELP block upon temperature increase. These ß-turns are known to participate in the intrinsic thermoresponsive behavior of the ELPs. In contrast, in PBS, circular dichroism measurements showed an attenuation of folded structure during the self-assembly phase, leading to less cohesive aggregates able to reorganize into nanoparticles at the CMT.
Asunto(s)
Elastina/química , Fragmentos de Péptidos/química , Polimerizacion , Polímeros de Estímulo Receptivo/química , Micelas , Nanopartículas/química , Transición de Fase , Ácido Poliglutámico/química , Proteínas Recombinantes/química , Temperatura de TransiciónRESUMEN
The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol-1 ) building block and a carboxyl-terminated PI (9 kg mol-1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl3 vapor, different plane orientations of the Q230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness.
Asunto(s)
Butadienos/química , Hemiterpenos/química , Nanoestructuras/química , Pentanos/química , Poliestirenos/química , Polivinilos/química , Butadienos/síntesis química , Hemiterpenos/síntesis química , Tamaño de la Partícula , Pentanos/síntesis química , Polímeros/síntesis química , Polímeros/química , Poliestirenos/síntesis química , Polivinilos/síntesis químicaRESUMEN
Statistical copoly(ionic liquid)s (coPILs), namely, poly(styrene)-co-poly(4-vinylbenzylethylimidazolium acetate) are synthesized by free-radical copolymerization in methanolic solution. These coPILs serve to in situ generate polymer-supported N-heterocyclic carbenes (NHCs), referred to as polyNHCs, due to the noninnocent role of the weakly basic acetate counter-anion interacting with the proton in C2-position of pendant imidazolium rings. Formation of polyNHCs is first evidenced through the quantitative formation of NHC-CS2 units by chemical postmodification of acetate-containing coPILs, in the presence of CS2 as electrophilic reagent (= stoichiometric functionalization of polyNHCs). The same coPILs are also employed as masked precursors of polyNHCs in organocatalyzed reactions, including a one-pot two-step sequential reaction involving benzoin condensation followed by addition of methyl acrylate, cyanosilylation, and transesterification reactions. The catalytic activity can be switched on and off successively upon thermal activation, thanks to the deprotonation/reprotonation equilibrium in C2-position. NHC species are thus in situ released upon heating at 80 °C (deprotonation), while regeneration of the coPIL precursor occurs at room temperature (reprotonation), triggering its precipitation in tetrahydrofuran. This also allows recycling the coPIL precatalyst by simple filtration, and reusing it for further catalytic cycles. The different organocatalyzed reactions tested can thus be performed with excellent yields after several cycles.
Asunto(s)
Acetatos/química , Compuestos Heterocíclicos/química , Imidazoles/química , Líquidos Iónicos/química , Metano/análogos & derivados , Polímeros/química , Aniones/química , Catálisis , Metano/química , Estructura Molecular , Polímeros/síntesis química , TemperaturaRESUMEN
Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) .
RESUMEN
Hydrophilic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline) were synthesized in dilute aqueous media in the presence of 1,6-hexanediol diglycidyl ether as a cross-linker. Nanogel formation was monitored by DLS and HSQC NMR spectroscopy, and the final nano-objects were characterized by DLS, TEM, AFM, and NanoSight analyses. Nanogels with a hydrodynamic radius of 78 nm exhibiting a slight positive surface charge were obtained. MTS assays (cell metabolic activity test) evidenced that nanogels were nontoxic in the investigated concentration range (i.e., 0.1 to 400 µg/mL) and that no specific interaction with bovine serum albumin was observed.
Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Oxazoles/química , Polietilenglicoles/química , Polietileneimina/química , Animales , Materiales Biocompatibles/metabolismo , Bovinos , Línea Celular , Ratones , Nanogeles , Nanopartículas/metabolismo , Oxazoles/metabolismo , Polietilenglicoles/metabolismo , Polietileneimina/metabolismo , Albúmina Sérica Bovina/metabolismoRESUMEN
The activation behavior of two N-heterocyclic carbenes (NHCs), namely, 1,3-bis(isopropyl)imidazol-2-ylidene(NHCiPr) and 1,3-bis(tert-butyl) imidazol-2-ylidene (NHCtBu), as organic nucleophiles in the reaction with methyl methacrylate (MMA) is described. NHCtBu allows the polymerization of MMA in DMF at room temperature and in toluene at 50 °C, whereas NHCiPr reacts with two molecules of MMA, forming an unprecedented imidazolium-enolate cyclodimer (NHCiPr/MMA=1:2). It is proposed that the reaction mechanism occurs by initial 1,4-nucleophilic addition of NHCiPr to MMA, generating a zwitterionic enolate 2, followed by addition of 2 to a second MMA molecule, forming a linear imidazolium-enolate 3 (NHCiPr/MMA=1:2). Proton transfer, generating intermediate 5, followed by cyclization and release of methanol yielded the aforementioned zwitterionic cyclodimer 1:2 adduct 7, the molecular structure of which has been established by NMR spectroscopy, X-ray diffraction, and mass spectrometry. This unexpected difference between NHCtBu and NHCiPr in the reaction with MMA (polymerization and cyclodimerization, respectively) can be rationalized by using DFT calculations. In particular, the nature of the NHC strongly influences the cyclodimerization pathway, the cyclization of 5 and the release of methanol are the discriminating step and limiting step, respectively. In the case of NHCtBu, both steps are strongly disfavoured compared with that of NHCiPr (energetic difference of around 14 and 9â kcal mol(-1), respectively), preventing the cyclization mechanism from a kinetic viewpoint. Moreover, addition of a third molecule of MMA in the polymerization pathway results in a lower activation barrier than that of the limiting step in the cyclodimerization pathway (difference of around 14â kcal mol(-1)), in agreement with the formation of polymethyl methacrylate (PMMA) by using NHCtBu as nucleophile.
RESUMEN
A poly(ionic liquid)-based block copolymer (PIL BCP), namely, poly(vinyl acetate)-b-poly(N-vinyl-3-butylimidazolium bromide), PVAc-b-PVBuImBr, is synthesized by sequential cobalt-mediated radical polymerization (CMRP). A PVAc precursor is first prepared at 30 °C in bulk by CMRP of VAc, using bis(acetylacetonato)cobalt(II), Co(acac)2, and a radical source (V-70). Growth of PVBuImBr from PVAc-Co(acac)2 is accomplished by CMRP in DMF/MeOH (2:1, v/v). This PIL BCP self-assembles in the sub-micron size range into aggregated core-shell micelles in THF, whereas polymeric vesicles are observed in water, as evidenced by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Thin-solid sample cut from raw materials analyzed by TEM shows an ordered lamellar organization by temperature-dependent synchrotron small-angle X-ray scattering (SAXS). Anion exchange can be accomplished to achieve the corresponding PIL BCP with bis(trifluorosulfonyl)imide (Tf2 N(-)) anions, which also gives rise to an ordered lamellar phase in bulk samples. A complete suppression of SAXS second-order reflection suggests that this compound has a symmetric volume fraction (f ≈ 0.5). SAXS characterization of both di- and triblock PIL BCP analogues previously reported also shows a lamellar phase of very similar behavior, with only an increase of the period by about 8% at 60 °C.
Asunto(s)
Cobalto/química , Radicales Libres/química , Líquidos Iónicos/química , Polímeros/química , Micelas , Polímeros/síntesis química , Agua/químicaRESUMEN
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
Asunto(s)
Poliésteres , Urea , Dioxanos , Metano/análogos & derivados , Plásticos , Poliésteres/química , Polimerizacion , Estereoisomerismo , Tiourea , ToluenoRESUMEN
HYPOTHESIS: Stabilization of water-in-water (W/W) emulsions resulting from the separation of polymeric phases such as dextran (DEX) and poly(ethyleneoxide) (PEO) is highly challenging, because of the very low interfacial tensions between the two phases and because of the interface thickness extending over several nanometers. In the present work, we present a new type of stabilizers, based on bis-hydrophilic, thermoresponsive microgels, incorporating in the same structure poly(N-isopropylacrylamide) (pNIPAM) chains having an affinity for the PEO phase and dextran moieties. We hypothesize that these particles allow better control of the stability of the W/W emulsions. EXPERIMENTS: The microgels were synthesized by copolymerizing the NIPAM monomer with a multifunctional methacrylated dextran. They were characterized by dynamic light scattering, zeta potential measurements and nuclear magnetic resonance as a function of temperature. Microgels with different compositions were tested as stabilizers of droplets of the PEO phase dispersed in the DEX phase (P/D) or vice-versa (D/P), at different concentrations and temperatures. FINDINGS: Only microgels with the highest DEX content revealed excellent stabilizing properties for the emulsions by adsorbing at the droplet surface, thus demonstrating the fundamental role of bis-hydrophilicity. At room temperature, both pNIPAM and DEX chains were swollen by water and stabilized better D/P emulsions. However, above the volume phase transition temperature (VPTT ≈ 32 °C) of pNIPAM the microgels shrunk and stabilized better P/D emulsions. At all temperatures, excess microgels partitioned more to the PEO phase. The change in structure and interparticle interaction induced by heating can be exploited to control the W/W emulsion stability.
Asunto(s)
Microgeles , Emulsiones , Geles , Interacciones Hidrofóbicas e Hidrofílicas , AguaRESUMEN
Control of stereoregularity is inherent to precision polymerization chemistry for the development of functional materials. A prototypal example of this strategy is the ring-opening polymerization (ROP) of racemic lactide (rac-LA), a bio-sourced monomer. Despite significant advances in organocatalysis, stereoselective ROP of rac-LA employing chiral organocatalysts remains unexplored. Here we tackle that challenge by resorting to Takemoto's catalyst, a chiral aminothiourea, in the presence of a phosphazene base. This chiral binary organocatalytic system allows for fast, chemo- and stereoselective ROP of rac-LA at room temperature, yielding highly isotactic, semi-crystalline and metal-free polylactide, with a melting temperature as high as 187 °C.
RESUMEN
Despite significant advances in organocatalysis, stereoselective polymerization reactions utilizing chiral organocatalysts have received very little attention, and much about the underlying mechanisms remains unknown. Here, we report that both commercially available (R,R)- and (S,S)-enantiomers of chiral thiourea-amine Takemoto's organocatalysts promote efficient control and high isoselectivity at room temperature of the ring-opening polymerization (ROP) of racemic lactide by kinetic resolution, yielding highly isotactic, semicrystalline and metal-free polylactide (PLA). Kinetic investigations and combined analyses of the resulting PLAs have allowed the stereocontrol mechanism, which eventually involves both enantiomorphic site control and chain-end control, to be determined. Moreover, epimerization of rac-LA to meso-LA is identified as being responsible for the introduction of some stereoerrors during the ROP process.
RESUMEN
A novel synthetic strategy to single chain nanoparticles (SCNP) based on a previously unexplored intramolecular reaction as a means to autonomously fold a parent copolymer precursor is reported. The latter is a statistical styrenic-type copolymer synthesized by RAFT polymerization and is composed of four different comonomer units, including styrene, grafted poly(ethylene oxide) chains, and antagonist benzimidazol- and chlorobenzyl-based units. The two latter functions are reacted together by a quaternization reaction to spark the folding process, creating imidazolium-based cross-link points. Formation of SCNP with a hydrodynamic diameter <10 nm is established by a combination of different characterization techniques. A subsequent metathesis step for exchanging chloride anions by acetate ones of imidazolium moieties enables a use of SCNP for the organocatalyzed benzoin condensation, thanks to the ability of imidazolium acetate to generate SCNP-supported N-heterocyclic carbenes as organocatalysts.
RESUMEN
Tuning the lower critical solution temperature (LCST) of temperature-responsive recombinant elastin-like polypeptides has usually been achieved by designing different protein sequences, in terms of amino acid composition and length, implying tedious molecular cloning steps. In the present work, we have explored the chemoselective alkylation of methionine as an easy means to modify elastin repeat side chains and easily modulate the LCST of the polypeptides. Such a versatile synthetic method shall practically be exploited to modulate any properties of recombinant polymers.