Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 17(6): e3000331, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226107

RESUMEN

Eukaryotes have evolved elaborate mechanisms to ensure that chromosomes segregate with high fidelity during mitosis and meiosis, and yet specific aneuploidies can be adaptive during environmental stress. Here, we identify a chromatin-based system required for inducible aneuploidy in a human pathogen. Candida albicans utilizes chromosome missegregation to acquire tolerance to antifungal drugs and for nonmeiotic ploidy reduction after mating. We discovered that the ancestor of C. albicans and 2 related pathogens evolved a variant of histone 2A (H2A) that lacks the conserved phosphorylation site for kinetochore-associated Bub1 kinase, a key regulator of chromosome segregation. Using engineered strains, we show that the relative gene dosage of this variant versus canonical H2A controls the fidelity of chromosome segregation and the rate of acquisition of tolerance to antifungal drugs via aneuploidy. Furthermore, whole-genome chromatin precipitation analysis reveals that Centromere Protein A/ Centromeric Histone H3-like Protein (CENP-A/Cse4), a centromeric histone H3 variant that forms the platform of the eukaryotic kinetochore, is depleted from tetraploid-mating products relative to diploid parents and is virtually eliminated from cells exposed to aneuploidy-promoting cues. We conclude that genetically programmed and environmentally induced changes in chromatin can confer the capacity for enhanced evolvability via chromosome missegregation.


Asunto(s)
Proteína A Centromérica/metabolismo , Segregación Cromosómica/fisiología , Histonas/metabolismo , Aneugénicos/metabolismo , Aneuploidia , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/fisiología , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Histonas/fisiología , Cinetocoros/metabolismo , Meiosis , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Malar J ; 15: 173, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26987601

RESUMEN

BACKGROUND: A major goal in the search for new anti-malarial compounds is to identify new mechanisms of action or new molecular targets. While cell-based, growth inhibition-based screening have enjoyed tremendous success, an alternative approach is to specifically assay a given pathway or essential cellular process. METHODS: Here, this work describes the development of a plate-based, in vitro luciferase assay to probe for inhibitors specific to protein synthesis in Plasmodium falciparum through the use of an in vitro translation system derived from the parasite. RESULTS: Using the Medicines for Malaria Venture's Malaria Box as a pilot, 400 bioactive compounds with minimal human cytotoxicity profiles were screened, identifying eight compounds that displayed greater potency against the P. falciparum translation machinery relative to a mammalian translation system. Dose-response curves were determined in both translation systems to further characterize the top hit compound (MMV008270). CONCLUSIONS: This assay will be useful not only in future anti-malarial screening efforts but also in the investigation of P. falciparum protein synthesis and essential processes in P. falciparum biology.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Plasmodium falciparum/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro/métodos
3.
Cell Rep ; 39(7): 110837, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584674

RESUMEN

Systemic immunity is stringently regulated by commensal intestinal microbes, including the pathobiont Candida albicans. This fungus utilizes various transcriptional and morphological programs for host adaptation, but how this heterogeneity affects immunogenicity remains uncertain. We show that UME6, a transcriptional regulator of filamentation, is essential for intestinal C. albicans-primed systemic Th17 immunity. UME6 deletion and constitutive overexpression strains are non-immunogenic during commensal colonization, whereas immunogenicity is restored by C. albicans undergoing oscillating UME6 expression linked with ß-glucan and mannan production. In turn, intestinal reconstitution with these fungal cell wall components restores protective Th17 immunity to mice colonized with UME6-locked variants. These fungal cell wall ligands and commensal C. albicans stimulate Th17 immunity through multiple host pattern recognition receptors, including Toll-like receptor 2 (TLR2), TLR4, Dectin-1, and Dectin-2, which work synergistically for colonization-induced protection. Thus, dynamic gene expression fluctuations by C. albicans during symbiotic colonization are essential for priming host immunity against disseminated infection.


Asunto(s)
Candida albicans , Células Th17 , Animales , Candida albicans/genética , Pared Celular , Intestinos , Ratones , Simbiosis
4.
Cell Host Microbe ; 29(6): 1002-1013.e9, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33915113

RESUMEN

Candida albicans is a fungal component of the human gut microbiota and an opportunistic pathogen. C. albicans transcription factors (TFs), Wor1 and Efg1, are master regulators of an epigenetic switch required for fungal mating that also control colonization of the mammalian gut. We show that additional mating regulators, WOR2, WOR3, WOR4, AHR1, CZF1, and SSN6, also influence gut commensalism. Using Calling Card-seq to record Candida TF DNA-binding events in the host, we examine the role and relationships of these regulators during murine gut colonization. By comparing in-host transcriptomes of regulatory mutants with enhanced versus diminished commensal fitness, we also identify a set of candidate commensalism effectors. These include Cht2, a GPI-linked chitinase whose gene is bound by Wor1, Czf1, and Efg1 in vivo, that we show promotes commensalism. Thus, the network required for a C. albicans sexual switch is biochemically active in the host intestine and repurposed to direct commensalism.


Asunto(s)
Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Unión al ADN/fisiología , Tracto Gastrointestinal/microbiología , Regulación Fúngica de la Expresión Génica , Simbiosis , Factores de Transcripción/fisiología , Animales , Femenino , Proteínas Fúngicas/fisiología , Genes del Tipo Sexual de los Hongos , Genes de Cambio , Ensayos Analíticos de Alto Rendimiento , Interacciones Microbiota-Huesped , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Mutación , Transcriptoma
5.
J Vis Exp ; (153)2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31762460

RESUMEN

Candida albicans is a fungal component of the gut microbiota in humans and many other mammals. Although C. albicans does not cause symptoms in most colonized hosts, the commensal reservoir does serve as a repository for infectious disease, and the presence of high fungal titers in the gut is associated with inflammatory bowel disease. Here, we describe a method to visualize C. albicans cell morphology and localization in a mouse model of stable gastrointestinal colonization. Colonization is established using a single dose of C. albicans in animals that have been treated with oral antibiotics. Segments of gut tissue are fixed in a manner that preserves the architecture of luminal contents (microorganisms and mucus) as well as the host mucosa. Finally, fluorescent in situ hybridization is performed using probes against fungal rRNA to stain for C. albicans and hyphae. A key advantage of this protocol is that it allows for simultaneous observation of C. albicans cell morphology and its spatial association with host structures during gastrointestinal colonization.


Asunto(s)
Candida albicans/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Hibridación Fluorescente in Situ/métodos , Animales , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones , Membrana Mucosa , Simbiosis
6.
Cell Host Microbe ; 25(3): 432-443.e6, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30870623

RESUMEN

Candida albicans is a gut commensal and opportunistic pathogen. The transition between yeast and invasive hyphae is central to virulence but has unknown functions during commensal growth. In a mouse model of colonization, yeast and hyphae co-occur throughout the gastrointestinal tract. However, competitive infections of C. albicans homozygous gene disruption mutants revealed an unanticipated, inhibitory role for the yeast-to-hypha morphogenesis program on commensalism. We show that the transcription factor Ume6, a master regulator of filamentation, inhibits gut colonization, not by effects on cell shape, but by activating the expression of a hypha-specific pro-inflammatory secreted protease, Sap6, and a hyphal cell surface adhesin, Hyr1. Like a ume6 mutant, strains lacking SAP6 exhibit enhanced colonization fitness, whereas SAP6-overexpression strains are attenuated in the gut. These results reveal a tradeoff between fungal programs supporting commensalism and virulence in which selection against hypha-specific markers limits the disease-causing potential of this ubiquitous commensal-pathogen.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Tracto Gastrointestinal/microbiología , Regulación Fúngica de la Expresión Génica , Simbiosis , Animales , Candida albicans/citología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/citología , Hifa/crecimiento & desarrollo , Ratones , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia
7.
Nat Rev Microbiol ; 15(2): 96-108, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27867199

RESUMEN

Candida albicans is a ubiquitous commensal of the mammalian microbiome and the most prevalent fungal pathogen of humans. A cell-type transition between yeast and hyphal morphologies in C. albicans was thought to underlie much of the variation in virulence observed in different host tissues. However, novel yeast-like cell morphotypes, including opaque(a/α), grey and gastrointestinally induced transition (GUT) cell types, were recently reported that exhibit marked differences in vitro and in animal models of commensalism and disease. In this Review, we explore the characteristics of the classic cell types - yeast, hyphae, pseudohyphae and chlamydospores - as well as the newly identified yeast-like morphotypes. We highlight emerging knowledge about the associations of these different morphotypes with different host niches and virulence potential, as well as the environmental cues and signalling pathways that are involved in the morphological transitions.


Asunto(s)
Candida albicans/patogenicidad , Plasticidad de la Célula/fisiología , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno/fisiología , Hifa/fisiología , Regulación Fúngica de la Expresión Génica , Humanos , Transducción de Señal , Simbiosis , Virulencia
8.
Cell Rep ; 4(4): 633-41, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23954785

RESUMEN

Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration instructions are unknown. Here, we report that position control genes (PCGs) that control regeneration and tissue turnover are expressed in a subepidermal layer of nonneoblast cells. These subepidermal cells coexpress many PCGs. We propose that these subepidermal cells provide a system of body coordinates and positional information for regeneration, and identify them to be muscle cells of the planarian body wall. Almost all planarian muscle cells express PCGs, suggesting a dual function: contraction and control of patterning. PCG expression is dynamic in muscle cells after injury, even in the absence of neoblasts, suggesting that muscle is instructive for regeneration. We conclude that planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of any body region.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Planarias/fisiología , Células Madre Pluripotentes/metabolismo , Regeneración , Animales , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Planarias/citología , Planarias/metabolismo , Células Madre Pluripotentes/citología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA