Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2123301120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827261

RESUMEN

Dehydrodiconiferyl alcohol glucoside (DCG) is a phenylpropanoid-derived plant metabolite with reported cytokinin-substituting and cell-division-promoting activity. Despite its claimed activity, DCG did not trigger morphological changes in Arabidopsis seedlings nor did it alter transcriptional shifts in cell division and cytokinin-responsive genes. In reinvestigating the bioactivity of DCG in its original setting, the previously described stimulation of tobacco callus formation could not be confirmed. No evidence was found that DCG is actually taken up by plant cells, which could explain the absence of any observable activity in the performed experiments. The DCG content in plant tissue increased when feeding explants with the DCG aglycone dehydrodiconiferyl alcohol, which is readily taken up and converted to DCG by plant cells. Despite the increased DCG content, no activity for this metabolite could be demonstrated. Our results therefore demand a reevaluation of the often-quoted cytokinin-substituting and cell-division-promoting activity that has previously been attributed to this metabolite.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas/metabolismo , Glucósidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Exp Bot ; 70(21): 6293-6304, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504728

RESUMEN

Agrochemicals provide vast potential to improve plant productivity, because they are easy to implement at low cost while not being restricted by species barriers as compared with breeding strategies. Despite the general interest, only a few compounds with growth-promoting activity have been described so far. Here, we add cis-cinnamic acid (c-CA) to the small portfolio of existing plant growth stimulators. When applied at low micromolar concentrations to Arabidopsis roots, c-CA stimulates both cell division and cell expansion in leaves. Our data support a model explaining the increase in shoot biomass as the consequence of a larger root system, which allows the plant to explore larger areas for resources. The requirement of the cis-configuration for the growth-promoting activity of CA was validated by implementing stable structural analogs of both cis- and trans-CA in this study. In a complementary approach, we used specific light conditions to prevent cis/trans-isomerization of CA during the experiment. In both cases, the cis-form stimulated plant growth, whereas the trans-form was inactive. Based on these data, we conclude that c-CA is an appealing lead compound representing a novel class of growth-promoting agrochemicals. Unraveling the underlying molecular mechanism could lead to the development of innovative strategies for boosting plant biomass.


Asunto(s)
Cinamatos/farmacología , Desarrollo de la Planta/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ácidos Carboxílicos/farmacología , Cinamatos/química , Ciclopropanos/farmacología , Ácidos Indolacéticos/farmacología , Isomerismo , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA