RESUMEN
Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.
Asunto(s)
Antibacterianos , Amplificación de Genes , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Filogenia , Bacterias Gramnegativas/genética , Bacterias Grampositivas/metabolismoRESUMEN
BACKGROUND & AIMS: The protozoa Giardia duodenalis is a major cause of gastrointestinal illness worldwide, but underlying pathophysiological mechanisms remain obscure, partly due to the absence of adequate cellular models. We aimed at overcoming these limitations and recapitulating the authentic series of pathogenic events in the primary human duodenal tissue by using the human organoid system. METHODS: We established a compartmentalized cellular transwell system with electrophysiological and barrier properties akin to duodenal mucosa and dissected the events leading to G. duodenalis-induced barrier breakdown by functional analysis of transcriptional, electrophysiological, and tight junction components. RESULTS: Organoid-derived cell layers of different donors showed a time- and parasite load-dependent leak flux indicated by collapse of the epithelial barrier upon G. duodenalis infection. Gene set enrichment analysis suggested major expression changes, including gene sets contributing to ion transport and tight junction structure. Solute carrier family 12 member 2 and cystic fibrosis transmembrane conductance regulator-dependent chloride secretion was reduced early after infection, while changes in the tight junction composition, localization, and structural organization occurred later as revealed by immunofluorescence analysis and freeze fracture electron microscopy. Functionally, barrier loss was linked to the adenosine 3',5'-cyclic monophosphate (cAMP)/protein kinase A-cAMP response element-binding protein signaling pathway. CONCLUSIONS: Data suggest a previously unknown sequence of events culminating in intestinal barrier dysfunction upon G. duodenalis infection during which alterations of cellular ion transport were followed by breakdown of the tight junctional complex and loss of epithelial integrity, events involving a cAMP/protein kinase A-cAMP response element-binding protein mechanism. These findings and the newly established organoid-derived model to study G. duodenalis infection may help to explore new options for intervening with disease and infection, in particular relevant for chronic cases of giardiasis.
Asunto(s)
Giardiasis/fisiopatología , Mucosa Intestinal/fisiopatología , Transporte Iónico , Transducción de Señal , Uniones Estrechas/fisiología , Apoptosis , Células CACO-2 , Cloruros/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Duodeno , Impedancia Eléctrica , Giardia lamblia , Giardiasis/genética , Giardiasis/inmunología , Humanos , Interleucina-1/genética , Transporte Iónico/genética , FN-kappa B/genética , Organoides , Carga de Parásitos , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Uniones Estrechas/genética , Uniones Estrechas/patología , Uniones Estrechas/ultraestructura , Transcriptoma , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
SUMMARY: RNA-sequencing (RNA-Seq) is the current method of choice for studying bacterial transcriptomes. To date, many computational pipelines have been developed to predict differentially expressed genes from RNA-Seq data, but no gold-standard has been widely accepted. We present the Snakemake-based tool Smart Consensus Of RNA Expression (SCORE) which uses a consensus approach founded on a selection of well-established tools for differential gene expression analysis. This allows SCORE to increase the overall prediction accuracy and to merge varying results into a single, human-readable output. SCORE performs all steps for the analysis of bacterial RNA-Seq data, from read preprocessing to the overrepresentation analysis of significantly associated ontologies. Development of consensus approaches like SCORE will help to streamline future RNA-Seq workflows and will fundamentally contribute to the creation of new gold-standards for the analysis of these types of data. AVAILABILITY AND IMPLEMENTATION: https://github.com/SiWolf/SCORE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Bacterias/genética , Programas Informáticos , Transcriptoma , Consenso , Regulación Bacteriana de la Expresión Génica , Análisis de Secuencia de ARNRESUMEN
Staphylococcus (S.) aureus is a leading cause of bacterial infection world-wide, and currently no vaccine is available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the suitability of mice for S. aureus infection models has often been questioned, because experimental infection of mice with human-adapted S. aureus requires very high infection doses. Moreover, mice were not considered to be natural hosts of S. aureus. The latter has been disproven by our recent findings, showing that both laboratory mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus. Here, we investigated whether mouse-and vole-derived S. aureus strains show an enhanced virulence in mice as compared to the human-adapted strain Newman. Using a step-wise approach based on the bacterial genotype and in vitro assays for host adaptation, we selected the most promising candidates for murine infection models out of a total of 254 S. aureus isolates from laboratory mice as well as wild rodents and shrews. Four strains representing the clonal complexes (CC) 8, 49, and 88 (n = 2) were selected and compared to the human-adapted S. aureus strain Newman (CC8) in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49 strain, named DIP, was highly virulent in BALB/c mice in pneumonia and bacteremia models, whereas the other murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses in the murine bacteremia model similar to that of Newman. In the pneumonia model, DIP was also more virulent than Newman but the effect was less pronounced. Whole genome sequencing data analysis identified a pore-forming toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates. To conclude, the mouse-adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a promising tool to develop clinically more relevant infection models.
Asunto(s)
Modelos Animales de Enfermedad , Ratones , Neumonía/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Animales , Arvicolinae , Bacteriemia/inmunología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Citocinas/inmunología , Femenino , Humanos , Leucocidinas/genética , Ratones Endogámicos BALB C , Neumonía/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Staphylococcus aureus/aislamiento & purificación , Virulencia/genética , Secuenciación Completa del GenomaRESUMEN
The global spread of plasmid-mediated mobile colistin resistance (mcr) genes threatens the vital role of colistin as a drug of last resort. We investigated whether the recurrent occurrence of specific E. coli pathotypes and plasmids in individual pig farms resulted from the continued presence or repeated reintroduction of distinct E. coli strains. E. coli isolates (n = 154) obtained from three pig farms with at least four consecutive years of mcr detection positive for virulence-associated genes (VAGs) predicting an intestinal pathogenic pathotype via polymerase chain reaction were analyzed. Detailed investigation of VAGs, antimicrobial resistance genes and plasmid Inc types was conducted using whole genome sequencing for 87 selected isolates. Sixty-one E. coli isolates harbored mcr-1, and one isolate carried mcr-4. On Farm 1, mcr-positive isolates were either edema disease E. coli (EDEC; 77.3%) or enterotoxigenic E. coli (ETEC; 22.7%). On Farm 2, all mcr-positive strains were ETEC, while mcr-positive isolates from Farm 3 showed a wider range of pathotypes. The mcr-1.1 gene was located on IncHI2 (Farm 1), IncX4 (Farm 2) or IncX4 and IncI2 plasmids (Farm 3). These findings suggest that various pathogenic E. coli strains play an important role in maintaining plasmid-encoded colistin resistance genes in the pig environment over time.
RESUMEN
Third generation cephalosporin-resistant (3GCR) Enterobacterales are known to be prevalent in Madagascar, with high colonization or infection rates in particular in Madagascan patients. Extended spectrum beta-lactamases (ESBLs) have been reported to be the predominant underlying resistance mechanism in human isolates. So far, little is known on antimicrobial resistance and its molecular determinants in Enterobacterales and other bacteria causing enteric colonization of Madagascan wild animals. To address this topic, swabs from 49 animal stool droppings were collected in the Madagascan Tsimanapesotsa National Park and assessed by cultural growth of bacterial microorganisms on elective media. In addition to 7 Acinetobacter spp., a total of 31 Enterobacterales growing on elective agar for Enterobacterales could be isolated and subjected to whole genome sequencing. Enterobacter spp. was the most frequently isolated genus, and AmpC-type beta-lactamases were the quantitatively dominating molecular resistance mechanism. In contrast, the blaCTX-M-15 gene, which has repeatedly been associated with 3GC-resistance in Madagascan Enterobacterales from humans, was detected in a single Escherichia coli isolate only. The identification of the fosfomycin-resistance gene fosA in a high proportion of isolates is concerning, as fosfomycin is increasingly used to treat infections caused by multidrug-resistant bacteria. In conclusion, the proof-of-principle assessment indicated a high colonization rate of resistant bacteria in stool droppings of Madagascan wild animals with a particular focus on 3GCR Enterobacterales. Future studies should confirm these preliminary results in a more systematic way and assess the molecular relationship of animal and human isolates to identify potential routes of transmission.
RESUMEN
Extraintestinal pathogenic Escherichia coli (ExPEC) account for over 80% and 60% of bacterial urinary tract infections (UTIs) in humans and animals, respectively. As shared uropathogenic E. coli (UPEC) strains have been previously reported among humans and pets, our study aimed to characterize E. coli lineages among UTI isolates from dogs and cats and to assess their overlaps with human UPEC lineages. We analysed 315 non-duplicate E. coli isolates from the UT of dogs (198) and cats (117) collected in central Germany in 2019 and 2020 utilizing whole genome sequencing and in silico methods. Phylogroup B2 (77.8%), dog-associated sequence type (ST) 372 (18.1%), and human-associated ST73 (16.6%), were predominant. Other STs included ST12 (8.6%), ST141 (5.1%), ST127 (4.8%), and ST131 (3.5%). Among these, 58.4% were assigned to the ExPEC group and 51.1% to the UPEC group based on their virulence associated gene (VAG) profile (ExPEC, presence of ≥VAGs: papAH and/or papC, sfa/focG, afaD/draBC, kpsMTII, and iutA; UPEC, additionally cnf1 or hlyD). Extended-spectrum cephalosporin (ESC) resistance mediated by extended-spectrum ß-lactamases (ESBL) and AmpC-ß-lactamase was identified in 1.9% of the isolates, along with one carbapenemase-producing isolate and one isolate carrying a mcr gene. Low occurrence of ESC-resistant or multidrug-resistant (MDR) isolates (2.9%) in the two most frequently detected STs implies that E. coli isolated from UTIs of companion animals are to a lesser extent associated with resistance, but possess virulence-associated genes enabling efficient UT colonization and carriage. Detection of human-related pandemic lineages suggests interspecies transmission and underscores the importance of monitoring companion animals.
RESUMEN
Dendritic cells (DC) play a crucial role in generating and maintaining antiviral immunity. While DC are implicated in the antiviral defense by inducing T cell responses, they can also become infected by Cytomegalovirus (CMV). CMV is not only highly species-specific but also specialized in evading immune protection, and this specialization is in part due to characteristic genes encoded by a given virus. Here, we investigated whether rat CMV can infect XCR1+ DC and if infection of DC alters expression of cell surface markers and migration behavior. We demonstrate that wild-type RCMV and a mutant virus lacking the γ-chemokine ligand xcl1 (Δvxcl1 RCMV) infect splenic rat DC ex vivo and identify viral assembly compartments. Replication-competent RCMV reduced XCR1 and MHCII surface expression. Further, gene expression of infected DC was analyzed by bulk RNA-sequencing (RNA-Seq). RCMV infection reverted a state of DC activation that was induced by DC cultivation. On the functional level, we observed impaired chemotactic activity of infected XCR1+ DC compared to mock-treated cells. We therefore speculate that as a result of RCMV infection, DC exhibit diminished XCR1 expression and are thereby blocked from the lymphocyte crosstalk.
Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Ratas , Animales , Citomegalovirus/genética , Linfocitos T/metabolismo , Infecciones por Citomegalovirus/metabolismo , Células DendríticasRESUMEN
Introduction: Horse clinics are hotspots for the accumulation and spread of clinically relevant and zoonotic multidrug-resistant bacteria, including extended-spectrum ß-lactamase producing (ESBL) Enterobacterales. Although median laparotomy in cases of acute equine colic is a frequently performed surgical intervention, knowledge about the effects of peri-operative antibiotic prophylaxis (PAP) based on a combination of penicillin and gentamicin on the gut microbiota is limited. Methods: We collected fecal samples of horses from a non-hospitalized control group (CG) and from horses receiving either a pre-surgical single-shot (SSG) or a peri-operative 5-day (5DG) course of PAP. To assess differences between the two PAP regimens and the CG, all samples obtained at hospital admission (t0), on days three (t1) and 10 (t2) after surgery, were screened for ESBL-producing Enterobacterales and subjected to 16S rRNA V1-V2 gene sequencing. Results: We included 48 samples in the SSG (n = 16 horses), 45 in the 5DG (n = 15), and 20 in the CG (for t0 and t1, n = 10). Two samples of equine patients receiving antibiotic prophylaxis (6.5%) were positive for ESBL-producing Enterobacterales at t0, while this rate increased to 67% at t1 and decreased only slightly at t2 (61%). Shannon diversity index (SDI) was used to evaluate alpha-diversity changes, revealing there was no significant difference between horses suffering from acute colic (5DG, SDImean of 5.90, SSG, SDImean of 6.17) when compared to the CG (SDImean of 6.53) at t0. Alpha-diversity decreased significantly in both PAP groups at t1, while at t2 the onset of microbiome recovery was noticed. Although we did not identify a significant SDImean difference with respect to PAP duration, the community structure (beta-diversity) was considerably restricted in samples of the 5DG at t1, most likely due to the ongoing administration of antibiotics. An increased abundance of Enterobacteriaceae, especially Escherichia, was noted for both study groups at t1. Conclusion: Colic surgery and PAP drive the equine gut microbiome towards dysbiosis and reduced biodiversity that is accompanied by an increase of samples positive for ESBL-producing Enterobacterales. Further studies are needed to reveal important factors promoting the increase and residency of ESBL-producing Enterobacterales among hospitalized horses.
RESUMEN
Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication.
RESUMEN
Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.
RESUMEN
Previous research identified veterinary clinics as hotspots with respect to accumulation and spread of multidrug resistant extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (EC). Therefore, promoting the prudent use of antibiotics to decrease selective pressure in that particular clinical environment is preferable to enhance biosecurity for animal patients and hospital staff. Accordingly, this study comparatively investigated the impact of two distinct perioperative antibiotic prophylaxis (PAP) regimens (short-term versus prolonged) on ESBL-EC carriage of horses subjected to colic surgery. While all horses received a combination of penicillin/gentamicin (P/G) as PAP, they were assigned to either the "single-shot group" (SSG) or the conventional "5-day group" (5DG). Fecal samples collected on arrival (t0), on the 3rd (t1) and on the 10th day after surgery (t2) were screened for ESBL-EC. All isolates were further investigated using whole genome sequences. In total, 81 of 98 horses met the inclusion criteria for this study. ESBL-EC identified in samples available at t0, t1 and t2 were 4.8% (SSG) and 9.7% (5DG), 37% (SSG) and 47.2% (5DG) as well as 55.6% (SSG) and 56.8% (5DG), respectively. Regardless of the P/G PAP regimen, horses were 9.12 times (95% CI 2.79-29.7) more likely to carry ESBL-EC at t1 compared to t0 (p < 0.001) and 15.64 times (95% CI 4.57-53.55) more likely to carry ESBL-EC at t2 compared to t0 (p < 0.001). ESBL-EC belonging to sequence type (ST) 10, ST86, ST641, and ST410 were the most prevalent lineages, with bla CTX - M - 1 (60%) being the dominant ESBL gene. A close spatio-temporal relationship between isolates sharing a particular ST was revealed by genome analysis, strongly indicating local spread. Consequently, hospitalization itself has a strong impact on ESBL-EC isolation rates in horses, possibly masking differences between distinct PAP regimens. The results of this study reveal accumulation and spread of multi-drug resistant ESBL-EC among horses subjected to colic surgery with different P/G PAP regimens, challenging the local hygiene management system and work-place safety of veterinary staff. Moreover, the predominance of particular ESBL-EC lineages in clinics providing health care for horses needs further investigation.
RESUMEN
Pathogens frequently associated with multi-drug resistant (MDR) phenotypes, including extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) and Acinetobacter baumannii isolated from horses admitted to horse clinics, pose a risk for animal patients and personnel in horse clinics. To estimate current rates of colonization, a total of 341 equine patients were screened for carriage of zoonotic indicator pathogens at hospital admission. Horses showing clinical signs associated with colic (n = 233) or open wounds (n = 108) were selected for microbiological examination of nostril swabs, faecal samples and wound swabs taken from the open wound group. The results showed alarming carriage rates of Gram-negative MDR pathogens in equine patients: 10.7% (34 of 318) of validated faecal specimens were positive for ESBL-E (94%: ESBL-producing Escherichia coli), with recorded rates of 10.5% for the colic and 11% for the open wound group. 92.7% of the ESBL-producing E. coli were phenotypically resistant to three or more classes of antimicrobials. A. baumannii was rarely detected (0.9%), and all faecal samples investigated were negative for Salmonella, both directly and after two enrichment steps. Screening results for the equine nostril swabs showed detection rates for ESBL-E of 3.4% among colic patients and 0.9% in the open wound group, with an average rate of 2.6% (9/340) for both indications. For all 41 ESBL-producing E. coli isolated, a broad heterogeneity was revealed using pulsed-field gel electrophoresis (PFGE) patterns and whole genome sequencing (WGS) -analysis. However, a predominance of sequence type complex (STC)10 and STC1250 was observed, including several novel STs. The most common genes associated with ESBL-production were identified as blaCTX-M-1 (31/41; 75.6%) and blaSHV-12 (24.4%). The results of this study reveal a disturbingly large fraction of multi-drug resistant and ESBL-producing E. coli among equine patients, posing a clear threat to established hygiene management systems and work-place safety of veterinary staff in horse clinics.