Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Pharm ; 17(11): 4114-4124, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32955894

RESUMEN

The availability of assays that predict the contribution of cytochrome P450 (CYP) metabolism allows for the design of new chemical entities (NCEs) with minimal oxidative metabolism. These NCEs are often substrates of non-CYP drug-metabolizing enzymes (DMEs), such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), carboxylesterases (CESs), and aldehyde oxidase (AO). Nearly 30% of clinically approved drugs are metabolized by non-CYP enzymes. However, knowledge about the differential hepatic versus extrahepatic abundance of non-CYP DMEs is limited. In this study, we detected and quantified the protein abundance of eighteen non-CYP DMEs (AO, CES1 and 2, ten UGTs, and five SULTs) across five different human tissues. AO was most abundantly expressed in the liver and to a lesser extent in the kidney; however, it was not detected in the intestine, heart, or lung. CESs were ubiquitously expressed with CES1 being predominant in the liver, while CES2 was enriched in the small intestine. Consistent with the literature, UGT1A4, UGT2B4, and UGT2B15 demonstrated liver-specific expression, whereas UGT1A10 expression was specific to the intestine. UGT1A1 and UGT1A3 were expressed in both the liver and intestine; UGT1A9 was expressed in the liver and kidney; and UGT2B17 levels were significantly higher in the intestine than in the liver. All five SULTs were detected in the liver and intestine, and SULT1A1 and 1A3 were detected in the lung. Kidney abundance was the most variable among the studied tissues, and overall, high interindividual variability (>15-fold) was observed for UGT2B17, CES2 (intestine), SULT1A1 (liver), UGT1A9, UGT2B7, and CES1 (kidney). These differential tissue abundance data can be integrated into physiologically based pharmacokinetic (PBPK) models for the prediction of non-CYP drug metabolism and toxicity in hepatic and extrahepatic tissues.


Asunto(s)
Aldehído Oxidasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Glucuronosiltransferasa/metabolismo , Intestino Delgado/enzimología , Riñón/enzimología , Hígado/enzimología , Pulmón/enzimología , Miocardio/enzimología , Sulfotransferasas/metabolismo , Adolescente , Adulto , Anciano , Niño , Preescolar , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Donantes de Tejidos , Adulto Joven
2.
J Cell Sci ; 123(Pt 20): 3558-65, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20930144

RESUMEN

The activating transcription factor 3 (ATF3) gene is induced by a variety of signals, including many of those encountered by cancer cells. We present evidence that ATF3 is induced by TGFß in the MCF10CA1a breast cancer cells and plays an integral role for TGFß to upregulate its target genes snail, slug and twist, and to enhance cell motility. Furthermore, ATF3 upregulates the expression of the TGFb gene itself, forming a positive-feedback loop for TGFß signaling. Functionally, ectopic expression of ATF3 leads to morphological changes and alterations of markers consistent with epithelial-to-mesenchymal transition (EMT). It also leads to features associated with breast-cancer-initiating cells: increased CD24(low)-CD44(high) population of cells, mammosphere formation and tumorigenesis. Conversely, knockdown of ATF3 reduces EMT, CD24(low)-CD44(high) cells and mammosphere formation. Importantly, knocking down twist, a downstream target, reduces the ability of ATF3 to enhance mammosphere formation, indicating the functional significance of twist in ATF3 action. To our knowledge, this is the first report demonstrating the ability of ATF3 to enhance breast cancer-initiating cell features and to feedback on TGFß. Because ATF3 is an adaptive-response gene and is induced by various stromal signals, these findings have significant implications for how the tumor microenvironment might affect cancer development.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Transcripción Activador 3/genética , Neoplasias de la Mama/genética , Antígeno CD24/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Receptores de Hialuranos/metabolismo , Immunoblotting , Inmunoprecipitación , Células Madre Neoplásicas/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Gene Expr ; 15(1): 1-11, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21061913

RESUMEN

Activating transcription factor 3 (ATF3) gene encodes a member of the ATF family of transcription factors and is induced by various stress signals. All members of this family share the basic region-leucine zipper (bZip) DNA binding motif and bind to the consensus sequence TGACGTCA in vitro. Previous reviews and an Internet source have covered the following topics: the nomenclature of ATF proteins, the history of their discovery, the potential interplays between ATFs and other bZip proteins, ATF3-interacting proteins, ATF3 target genes, and the emerging roles of ATF3 in cancer and immunity (see footnote 1). In this review, we present evidence and clues that prompted us to put forth the idea that ATF3 functions as a "hub" of the cellular adaptive-response network. We will then focus on the roles of ATF3 in modulating inflammatory response. Inflammation is increasingly recognized to play an important role for the development of many diseases. Putting this in the context of the hub idea, we propose that modulation of inflammation by ATF3 is a unifying theme for the potential involvement of ATF3 in various diseases.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Adaptación Fisiológica , Inflamación/etiología , Inflamación/metabolismo , Transducción de Señal , Factor de Transcripción Activador 3/química , Factor de Transcripción Activador 3/genética , Secuencia de Aminoácidos , Animales , Humanos , Inflamación/genética , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional
4.
Methods Enzymol ; 490: 175-94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21266251

RESUMEN

Activating transcription factor 3 (ATF3) gene encodes a member of the ATF family of transcription factors and is induced by various stress signals, including many of those that induce the unfolded protein response (UPR). Emerging evidence suggests that ATF3 is a hub of the cellular adaptive-response network and studies using various mouse models indicate that ATF3 plays a role in the pathogenesis of various diseases. One way to investigate the potential relevance of ATF3 to human diseases is to determine its expression in patient samples and test whether it correlates with disease progression or clinical outcomes. Due to the scarcity and preciousness of patient samples, methods that can detect ATF3 on archival tissue sections would greatly facilitate this research. In this chapter, we briefly review the roles of ATF3 in cellular adaptive-response and UPR, and then describe the detailed steps and tips that we developed based on general immunohistochemistry (IHC) protocols to detect ATF3 on paraffin embedded sections.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Inmunohistoquímica/métodos , Factor de Transcripción Activador 3/genética , Animales , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica/instrumentación , Inmunohistoquímica/normas , Ratones , Ratones Noqueados , Proyectos Piloto , Sensibilidad y Especificidad , Estrés Fisiológico/fisiología , Fijación del Tejido/instrumentación , Fijación del Tejido/métodos , Respuesta de Proteína Desplegada/fisiología
5.
Diabetes ; 57(3): 635-44, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18057093

RESUMEN

OBJECTIVE: beta-Cell failure is an essential component of all types of diabetes, and the insulin receptor substrate 2 (IRS2) branch of signaling plays a key role in beta-cell survival and function. We tested the hypothesis that activating transcription factor 3 (ATF3), a stress-inducible proapoptotic gene, downregulates the expression of IRS2 in beta-cells. RESEARCH DESIGN AND METHODS: We used both the gain- and loss-of-function approaches to test the effects of ATF3 on IRS2 gene expression. We also analyzed the binding of ATF3 to the IRS2 promoter by chromatin immunoprecipitation assay and the transcription of the IRS2 gene by polymerase II occupancy assay. Furthermore, we tested the ability of IRS2 to alleviate the proapoptotic effects of ATF3 in cultured beta-cells and in transgenic mice using the rat insulin promoter to drive the transgenes. RESULTS: Expression of ATF3 is sufficient to reduce IRS2 gene expression; in contrast, knockdown or knockout of ATF3 reduces the ability of stress signals to downregulate IRS2 expression. ATF3 binds to the IRS2 promoter in vivo, and the binding of ATF3 correlates with decreased IRS2 gene transcription. Functionally, expression of IRS2 protects beta-cells from ATF3-induced apoptosis. CONCLUSIONS: IRS2 is a target gene of ATF3, and its repression by ATF3 contributes, at least partly, to the apoptosis induced by ATF3. Because ATF3 is a stress-inducible gene, our work provides a direct link to explain how environmental stress factors can modulate IRS2 gene transcription.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Apoptosis/fisiología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Factor de Transcripción Activador 3/genética , Animales , Línea Celular , Células Cultivadas , Regulación hacia Abajo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Ratas , Estrés Fisiológico , Factores de Tiempo
6.
Blood ; 106(9): 3127-33, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16037385

RESUMEN

Although results from preclinical studies in animal models have proven the concept for use of anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) antibodies in cancer immunotherapy, 2 major obstacles have hindered their successful application for human cancer therapy. First, the lack of in vitro correlates of the antitumor effect of the antibodies makes it difficult to screen for the most efficacious antibody by in vitro analysis. Second, significant autoimmune side effects have been observed in a recent clinical trial. In order to address these 2 issues, we have generated human CTLA4 gene knock-in mice and used them to compare a panel of anti-human CTLA-4 antibodies for their ability to induce tumor rejection and autoimmunity. Surprisingly, while all antibodies induced protection against cancer and demonstrated some autoimmune side effects, the antibody that induced the strongest protection also induced the least autoimmune side effects. These results demonstrate that autoimmune disease does not quantitatively correlate with cancer immunity. Our approach may be generally applicable to the development of human therapeutic antibodies.


Asunto(s)
Anticuerpos/inmunología , Antígenos de Diferenciación/inmunología , Antígenos de Diferenciación/metabolismo , Autoinmunidad/inmunología , Neoplasias/inmunología , Animales , Anticuerpos/farmacología , Antígenos CD , Antígenos de Diferenciación/genética , Autoinmunidad/efectos de los fármacos , Antígeno CTLA-4 , Línea Celular , Complemento C3/metabolismo , Humanos , Riñón/inmunología , Riñón/metabolismo , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA