Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816617

RESUMEN

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Asunto(s)
Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Megacariocitos , Plaquetas/inmunología , Plaquetas/metabolismo , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Diferenciación Celular/inmunología , Megacariocitos/citología , Linaje de la Célula , Ratones Endogámicos C57BL , Hematopoyesis , Trombopoyesis , Ratones Noqueados , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/inmunología
2.
Nat Immunol ; 17(6): 666-676, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27043410

RESUMEN

According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Linfocitos/fisiología , Células Mieloides/fisiología , Células Progenitoras Mieloides/fisiología , Animales , Antígenos CD/metabolismo , Células Cultivadas , Biología Computacional , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de Matrices Tisulares , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
3.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27695000

RESUMEN

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Células Progenitoras Linfoides/fisiología , Células Progenitoras Mieloides/fisiología , Receptores Notch/metabolismo , Linfocitos T/fisiología , Timo/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Feto , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
4.
Blood ; 143(11): 953-966, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38096358

RESUMEN

ABSTRACT: Relapse after complete remission (CR) remains the main cause of mortality after allogeneic stem cell transplantation for hematological malignancies and, therefore, improved biomarkers for early prediction of relapse remains a critical goal toward development and assessment of preemptive relapse treatment. Because the significance of cancer stem cells as a source of relapses remains unclear, we investigated whether mutational screening for persistence of rare cancer stem cells would enhance measurable residual disease (MRD) and early relapse prediction after transplantation. In a retrospective study of patients who relapsed and patients who achieved continuous-CR with myelodysplastic syndromes and related myeloid malignancies, combined flow cytometric cell sorting and mutational screening for persistence of rare relapse-initiating stem cells was performed in the bone marrow at multiple CR time points after transplantation. In 25 CR samples from 15 patients that later relapsed, only 9 samples were MRD-positive in mononuclear cells (MNCs) whereas flowcytometric-sorted hematopoietic stem and progenitor cells (HSPCs) were MRD-positive in all samples, and always with a higher variant allele frequency than in MNCs (mean, 97-fold). MRD-positivity in HSPCs preceded MNCs in multiple sequential samples, in some cases preceding relapse by >2 years. In contrast, in 13 patients in long-term continuous-CR, HSPCs remained MRD-negative. Enhanced MRD sensitivity was also observed in total CD34+ cells, but HSPCs were always more clonally involved (mean, 8-fold). In conclusion, identification of relapse-initiating cancer stem cells and mutational MRD screening for their persistence consistently enhances MRD sensitivity and earlier prediction of relapse after allogeneic stem cell transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Trasplante Homólogo , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Respuesta Patológica Completa , Enfermedad Crónica , Células Madre Neoplásicas/patología , Recurrencia , Neoplasia Residual/diagnóstico , Neoplasia Residual/patología , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia
5.
Blood ; 142(19): 1622-1632, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562000

RESUMEN

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Asunto(s)
Células Endoteliales , Factor de Células Madre , Ratones , Animales , Factor de Células Madre/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Huesos , Nicho de Células Madre , Células de la Médula Ósea/metabolismo
6.
Blood ; 142(17): 1448-1462, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37595278

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type-specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Madre Hematopoyéticas , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Regulación de la Expresión Génica , Hematopoyesis/genética , Cromatina/metabolismo
7.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344248

RESUMEN

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Asunto(s)
Linfocitos B/citología , Linaje de la Célula/inmunología , Células Progenitoras Linfoides/citología , Células Mieloides/citología , Células Precursoras de Linfocitos B/citología , Linfocitos T/citología , Animales , Separación Celular , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Progenitoras Linfoides/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Timo/citología
8.
Nature ; 554(7690): 106-111, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29298288

RESUMEN

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Asunto(s)
Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Multipotentes/citología , Animales , Antígenos CD34 , Linfocitos B/citología , Plaquetas/citología , Antígeno CD48/deficiencia , Autorrenovación de las Células , Células Eritroides/citología , Femenino , Células Madre Hematopoyéticas/metabolismo , Masculino , Megacariocitos/citología , Ratones , Células Madre Multipotentes/metabolismo , Células Mieloides/citología , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Linfocitos T/citología
9.
J Intern Med ; 292(2): 262-277, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35822488

RESUMEN

The genetic architecture of cancer has been delineated through advances in high-throughput next-generation sequencing, where the sequential acquisition of recurrent driver mutations initially targeted towards normal cells ultimately leads to malignant transformation. Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic malignancies frequently initiated by mutations in the normal hematopoietic stem cell compartment leading to the establishment of leukemic stem cells. Although the genetic characterization of MDS and AML has led to identification of new therapeutic targets and development of new promising therapeutic strategies, disease progression, relapse, and treatment-related mortality remain a major challenge in MDS and AML. The selective persistence of rare leukemic stem cells following therapy-induced remission implies unique resistance mechanisms of leukemic stem cells towards conventional therapeutic strategies and that leukemic stem cells represent the cellular origin of relapse. Therefore, targeted surveillance of leukemic stem cells following therapy should, in the future, allow better prediction of relapse and disease progression, but is currently challenged by our restricted ability to distinguish leukemic stem cells from other leukemic cells and residual normal cells. To advance current and new clinical strategies for the treatment of MDS and AML, there is a need to improve our understanding and characterization of MDS and AML stem cells at the cellular, molecular, and genetic levels. Such work has already led to the identification of promising new candidate leukemic stem cell molecular targets that can now be exploited in preclinical and clinical therapeutic strategies, towards more efficient and specific elimination of leukemic stem cells.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Progresión de la Enfermedad , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/genética , Recurrencia
10.
Blood ; 131(15): 1712-1719, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29339402

RESUMEN

Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.


Asunto(s)
Médula Ósea/metabolismo , Eritropoyesis , Mielopoyesis , Receptores Notch/metabolismo , Transducción de Señal , Estrés Fisiológico , Animales , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Receptores Notch/genética
11.
Br J Haematol ; 187(2): 144-156, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31372979

RESUMEN

The concept of leukaemic stem cells (LSCs) was experimentally suggested 25 years ago through seminal data from John Dick's group, who showed that a small fraction of cells from acute myeloid leukaemia (AML) patients were able to be adoptively transferred into immunodeficient mice. The initial estimation of the frequency was 1:250 000 leukaemic cells, clearly indicating the difficulties ahead in translating knowledge on LSCs to the clinical setting. However, the field has steadily grown in interest, expanse and importance, concomitantly with the realisation of the molecular background for AML culminating in the sequencing of hundreds of AML genomes. The literature is now ripe with contributions describing how different molecular aberrations are more or less specific for LSCs, as well as reports showing selectivity in targeting LSCs in comparison to normal haematopoietic stem and progenitor cells. However, we argue here that these important data have not yet been fully realised within the clinical setting. In this clinically focused review, we outline the difficulties in identifying and defining LSCs at the individual patient level, with special emphasis on intraclonal heterogeneity. In addition, we suggest areas of future focus in order to realise the concept as real-time benefit for AML patients.


Asunto(s)
Genoma Humano , Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Leucemia Mieloide Aguda/historia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
13.
Blood ; 130(7): 881-890, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28634182

RESUMEN

Mutations in the RNA splicing gene SF3B1 are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of SF3B1 mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in SF3B1 in 39 of 40 cases (97.5%), combined with TET2 and DNMT3A in 11 (28%) and 6 (15%) patients, respectively. All recurrent mutations identified in mononuclear cells could be tracked back to the phenotypically defined hematopoietic stem cell (HSC) compartment in all investigated patients and were also present in downstream myeloid and erythroid progenitor cells. While in agreement with previous studies, little or no evidence for clonal (SF3B1 mutation) involvement could be found in mature B cells, consistent involvement at the pro-B-cell progenitor stage was established, providing definitive evidence for SF3B1 mutations targeting lymphomyeloid HSCs and compatible with mutated SF3B1 negatively affecting lymphoid development. Assessment of stem cell function in vitro as well as in vivo established that only HSCs and not investigated progenitor populations could propagate the SF3B1 mutated clone. Upon transplantation into immune-deficient mice, SF3B1 mutated MDS-RS HSCs differentiated into characteristic ring sideroblasts, the hallmark of MDS-RS. Our findings provide evidence of a multipotent lymphomyeloid HSC origin of SF3B1 mutations in MDS-RS patients and provide a novel in vivo platform for mechanistically and therapeutically exploring SF3B1 mutated MDS-RS.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Linfocitos/metabolismo , Mutación/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células Mieloides/metabolismo , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Anciano , Anciano de 80 o más Años , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Empalmosomas/metabolismo
14.
Nature ; 502(7470): 232-6, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23934107

RESUMEN

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Asunto(s)
Plaquetas/citología , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Linfocitos/citología , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Cell Mol Med ; 22(4): 2311-2318, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411522

RESUMEN

The C-type lectin domain family 12, member A (CLEC12A) receptor has emerged as a leukaemia-associated and cancer stem cell marker in myeloid malignancies. However, a detailed delineation of its expression in normal haematopoiesis is lacking. Here, we have characterized the expression pattern of CLEC12A on the earliest stem- and myeloid progenitor subsets in normal bone marrow. We demonstrate distinct CLEC12A expression in the classically defined myeloid progenitors, where on average 39.1% (95% CI [32.5;45.7]) of the common myeloid progenitors (CMPs) expressed CLEC12A, while for granulocyte-macrophage progenitors and megakaryocyte-erythroid progenitors (MEPs), the average percentages were 81.0% (95% CI [76.0;85.9]) and 11.9% (95% CI [9.3;14.6]), respectively. In line with the reduced CLEC12A expression on MEPs, functional assessment of purified CLEC12A+/- CMPs and MEPs in the colony-forming unit assay demonstrated CLEC12A+ subsets to favour non-erythroid colony growth. In conclusion, we provide evidence that the earliest CLEC12A+ cell in the haematopoietic tree is the classically defined CMP. Furthermore, we show that CLEC12A-expressing CMPs and MEPs are functionally different than their negative counterparts. Importantly, these data can help determine which cells will be spared during CLEC12A-targeted therapy, and we propose CLEC12A to be included in future studies of myeloid cancer stem cell biology.


Asunto(s)
Células de la Médula Ósea/citología , Lectinas Tipo C/genética , Células Progenitoras Mieloides/metabolismo , Trastornos Mieloproliferativos/genética , Receptores Mitogénicos/genética , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Trastornos Mieloproliferativos/patología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo
16.
Blood ; 128(2): 217-26, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27207794

RESUMEN

Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported.


Asunto(s)
Linaje de la Célula/fisiología , Feto/metabolismo , Linfopoyesis/fisiología , Células Precursoras de Linfocitos B/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Animales , Feto/citología , Ratones , Ratones Noqueados , Células Precursoras de Linfocitos B/citología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética
17.
Haematologica ; 102(3): 498-508, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27884971

RESUMEN

A high proportion of patients with lower-risk del(5q) myelodysplastic syndromes will respond to treatment with lenalidomide. The median duration of transfusion-independence is 2 years with some long-lasting responses, but almost 40% of patients progress to acute leukemia by 5 years after starting treatment. The mechanisms underlying disease progression other than the well-established finding of small TP53-mutated subclones at diagnosis remain unclear. We studied a longitudinal cohort of 35 low- and intermediate-1-risk del(5q) patients treated with lenalidomide (n=22) or not (n=13) by flow cytometric surveillance of hematopoietic stem and progenitor cell subsets, targeted sequencing of mutational patterns, and changes in the bone marrow microenvironment. All 13 patients with disease progression were identified by a limited number of mutations in TP53, RUNX1, and TET2, respectively, with PTPN11 and SF3B1 occurring in one patient each. TP53 mutations were found in seven of nine patients who developed acute leukemia, and were documented to be present in the earliest sample (n=1) and acquired during lenalidomide treatment (n=6). By contrast, analysis of the microenvironment, and of hematopoietic stem and progenitor cells by flow cytometry was of limited prognostic value. Based on our data, we advocate conducting a prospective study aimed at investigating, in a larger number of cases of del(5q) myelodysplastic syndromes, whether the detection of such mutations before and after lenalidomide treatment can guide clinical decision-making.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 5 , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Anciano , Anciano de 80 o más Años , Biomarcadores , Biología Computacional/métodos , Progresión de la Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lenalidomida , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Síndromes Mielodisplásicos/terapia , Pronóstico , Nicho de Células Madre , Talidomida/análogos & derivados , Talidomida/uso terapéutico , Resultado del Tratamiento
18.
Blood ; 121(20): 4156-65, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23535062

RESUMEN

The association between somatic JAK2 mutation and myeloproliferative neoplasms (MPNs) is now well established. However, because JAK2 mutations are associated with heterogeneous clinical phenotypes and often occur as secondary genetic events, some aspects of JAK2 mutation biology remain to be understood. We recently described a germline JAK2V617I mutation in a family with hereditary thrombocytosis and herein characterize the hematopoietic and signaling impact of JAK2V617I. Through targeted sequencing of MPN-associated mutations, exome sequencing, and clonality analysis, we demonstrate that JAK2V617I is likely to be the sole driver mutation in JAK2V617I-positive individuals with thrombocytosis. Phenotypic hematopoietic stem cells (HSCs) were increased in the blood and bone marrow of JAK2V617I-positive individuals and were sustained at higher levels than controls after xenotransplantation. In signaling and transcriptional assays, JAK2V617I demonstrated more activity than wild-type JAK2 but substantially less than JAK2V617F. After cytokine stimulation, JAK2V617I resulted in markedly increased downstream signaling compared with wild-type JAK2 and comparable with JAK2V617F. These findings demonstrate that JAK2V617I induces sufficient cytokine hyperresponsiveness in the absence of other molecular events to induce a homogeneous MPN-like phenotype. We also provide evidence that the JAK2V617I mutation may expand the HSC pool, providing insights into both JAK2 mutation biology and MPN disease pathogenesis.


Asunto(s)
Mutación de Línea Germinal/fisiología , Hematopoyesis/genética , Janus Quinasa 2/genética , Adulto , Sustitución de Aminoácidos/fisiología , Animales , Células Cultivadas , Familia , Femenino , Hematopoyesis/fisiología , Humanos , Isoleucina/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/fisiopatología , Valina/genética
19.
Blood ; 120(12): 2412-6, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22869792

RESUMEN

MicroRNAs (miRs) are involved in many aspects of normal and malignant hematopoiesis, including hematopoietic stem cell (HSC) self-renewal, proliferation, and terminal differentiation. However, a role for miRs in the generation of the earliest stages of lineage committed progenitors from HSCs has not been identified. Using Dicer inactivation, we show that the miR complex is not only essential for HSC maintenance but is specifically required for their erythroid programming and subsequent generation of committed erythroid progenitors. In bipotent pre-MegEs, loss of Dicer up-regulated transcription factors preferentially expressed in megakaryocyte progenitors (Gata2 and Zfpm1) and decreased expression of the erythroid-specific Klf1 transcription factor. These results show a specific requirement for Dicer in acquisition of erythroid lineage programming and potential in HSCs and their subsequent erythroid lineage differentiation, and in particular indicate a role for the miR complex in achieving proper balance of lineage-specific transcriptional regulators necessary for HSC multilineage potential to be maintained.


Asunto(s)
Linaje de la Célula , ARN Helicasas DEAD-box/fisiología , Células Eritroides/citología , Células Eritroides/metabolismo , Células Madre Hematopoyéticas/citología , Células Progenitoras de Megacariocitos/citología , Ribonucleasa III/fisiología , Animales , Biomarcadores/metabolismo , Western Blotting , Diferenciación Celular , ARN Helicasas DEAD-box/antagonistas & inhibidores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Integrasas/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Cancer Res ; 84(2): 211-225, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37921711

RESUMEN

Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.


Asunto(s)
Síndromes Mielodisplásicos , Fosfoproteínas , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalme del ARN/genética , Mutación , Factores de Transcripción/metabolismo , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA