Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Molecules ; 23(1)2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29346266

RESUMEN

The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD) during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.


Asunto(s)
Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Desarrollo Fetal , Melatonina/metabolismo , Animales , Ritmo Circadiano , Femenino , Humanos , Exposición Materna , Neuroprotección , Embarazo , Efectos Tardíos de la Exposición Prenatal
2.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632163

RESUMEN

Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder (ASD). FXS with ASD results from the loss of fragile X mental retardation (fmr) gene products, including fragile X mental retardation protein (FMRP), which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical features of ASD have been studied, the correlation between altered circadian rhythms and FXS with ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate its neuroprotective role during the developmental period in individuals with ASD. Thus, the present review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities, are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse effects of variations in the circadian rhythm.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Melatonina/uso terapéutico , Ansiedad , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/genética , Humanos , Discapacidad Intelectual , Aprendizaje , Melatonina/metabolismo , Melatonina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Factores de Riesgo , Convulsiones/tratamiento farmacológico , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/tratamiento farmacológico
3.
J Phys Ther Sci ; 29(4): 760-762, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28533625

RESUMEN

[Purpose] The purpose of the present review is to discuss recent published articles in the understanding of efficacy of interventional exercise on autistic Fragile X syndrome (FXS) with special emphasis on its significance in clinical application in patients. [Methods] This review article was identified scientifically and/or clinically relevant articles from PubMed that directly/indirectly met the inclusion criteria. [Results] Mutation of fragile X mental retardation 1 (fmr1) gene on the X chromosome is related with loss of fragile X mental retardation protein (FMRP) that affecting physiological and behavioral abnormalities. Autistic FXS individuals exhibit disturbed sleep and altered circadian behavior. Although the underlying molecular mechanisms are not been fully explored, interventional exercise in autistic FXS has been clinically used for the treatment of physiological and behavioral abnormalities as well as psychiatric disorder in autistic FXS. [Conclusion] This review describes beneficial efficacy of interventional exercise and its controversy in patients with autistic FXS. This review also provides interventional strategies for clinicians and scientists that the way of neurophysiological approaches according to the level of physical and behavioral abnormalities.

4.
Int J Mol Sci ; 16(8): 19657-70, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26295390

RESUMEN

Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS). Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.


Asunto(s)
Quimioterapia Combinada/métodos , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Traumatismos del Sistema Nervioso/prevención & control , Envejecimiento/fisiología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
5.
J Phys Ther Sci ; 27(6): 1743-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26180311

RESUMEN

[Purpose] The purpose of this study was to determine whether muscle activity and pressure-induced pain in the upper extremities are affected by smartphone use, and to compare the effects of phone handling with one hand and with both hands. [Subjects] The study subjects were asymptomatic women 20-22 years of age. [Methods] The subjects sat in a chair with their feet on the floor and the elbow flexed, holding a smartphone positioned on the thigh. Subsequently, the subjects typed the Korean anthem for 3 min, one-handed or with both hands. Each subject repeated the task three times, with a 5-min rest period between tasks to minimize fatigue. Electromyography (EMG) was used to record the muscle activity of the upper trapezius (UT), extensor pollicis longus (EPL), and abductor pollicis (AP) during phone operation. We also used a dolorimeter to measure the pressure-induced pain threshold in the UT. [Results] We observed higher muscle activity in the UT, AP, and EPL in one-handed smartphone use than in its two-handed use. The pressure-induced pain threshold of the UT was lower after use of the smartphone, especially after one-handed use. [Conclusion] Our results show that smartphone operation with one hand caused greater UT pain and induced increased upper extremity muscle activity.

6.
J Pineal Res ; 56(3): 264-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24484372

RESUMEN

In Asia, the incidence of colorectal cancer has been increasing gradually due to a more Westernized lifestyle. The aim of study is to determine the interaction between melatonin-induced cell death and cellular senescence. We treated HCT116 human colorectal adenocarcinoma cells with 10 µm melatonin and determined the levels of cell death-related proteins and evaluated cell cycle kinetics. The plasma membrane melatonin receptor, MT1, was significantly decreased by melatonin in a time-dependent manner, whereas the nuclear receptor, RORα, was increased only after 12 hr treatment. HCT116 cells, which upregulated both pro-apoptotic Bax and anti-apoptotic Bcl-xL in the early response to melatonin treatment, activated autophagic as well as apoptotic machinery within 18 hr. Melatonin decreased the S-phase population of the cells to 57% of the control at 48 hr, which was concomitant with a reduction in BrdU-positive cells in the melatonin-treated cell population. We found not only marked attenuation of E- and A-type cyclins, but also increased expression of p16 and p-p21. Compared to the cardiotoxicity of Trichostatin A in vitro, single or cumulative melatonin treatment induced insignificant detrimental effects on neonatal cardiomyocytes. We found that 10 µm melatonin activated cell death programs early and induced G1-phase arrest at the advanced phase. Therefore, we suggest that melatonin is a potential chemotherapeutic agent for treatment of colon cancer, the effects of which are mediated by regulation of both cell death and senescence in cancerous cells with minimized cardiotoxicity.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Melatonina/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Fase G1 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Ratas
7.
Front Public Health ; 12: 1326457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481836

RESUMEN

Objectives: Injury prevention can be achieved through various interventions, but it faces challenges due to its comprehensive nature and susceptibility to external environmental factors, making it difficult to detect risk signals. Moreover, the reliance on standardized systems leads to the construction and statistical analysis of numerous injury surveillance data, resulting in significant temporal delays before being utilized in policy formulation. This study was conducted to quickly identify substantive injury risk problems by employing text mining analysis on national emergency response data, which have been underutilized so far. Methods: With emerging issue and topic analyses, commonly used in science and technology, we detected problematic situations and signs by deriving injury keywords and analyzing time-series changes. Results: In total, 65 injury keywords were identified, categorized into hazardous, noteworthy, and diffusion accidents. Semantic network analysis on hazardous accident terms refined the injury risk issues. Conclusion: An increased risk of winter epidemic fractures due to extreme weather, self-harm due to depression (especially drug overdose and self-mutilation), and falls was observed in older adults. Thus, establishing effective injury prevention strategies through inter-ministerial and interagency cooperation is necessary.


Asunto(s)
Minería de Datos , Estaciones del Año , Factores de Tiempo
8.
Appl Radiat Isot ; 211: 111404, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38917619

RESUMEN

This study aimed to determine the optimal injection dose for non-human primate positron emission tomography (PET). We first used a monkey brain phantom with a volume of 80,000 mm3 containing 250 MBq of [18F]FDG. Next, we compared the radioactivity difference between the PET images and the actual radioactivity from the dose calibrator to determine the low-error range. We then evaluated the image quality using the NEMA-NU phantom. Finally, [18F]FP-CIT PET images were obtained from two monkeys with middle and high doses. As a result, PET images with a middle injected dose generated reasonable image quality and showed a high signal-to-noise ratio in monkey brain PET with [18F]FP-CIT. These results are expected to be actively applied in PET research using non-human primates.

9.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688719

RESUMEN

Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys. The MC marker, calretinin, distinguishes two subpopulations: septal and temporal. Dual-colored fluorescence labeling is utilized to compare the axonal projection patterns of these subpopulations. In both mice and monkeys, septal and temporal MCs project axons across the longitudinal axis of the ipsilateral DG, indicating conserved associational projections. However, unlike in mice, no MC subpopulations in monkeys make commissural projections to the contralateral DG. In monkeys, temporal MCs send associational fibers exclusively to the inner molecular layer, while septal MCs give rise to wide axonal projections spanning multiple molecular layers, akin to equivalent MC subpopulations in mice. Despite conserved septotemporal heterogeneity, interspecies differences are observed in the topological organization of septal MCs, particularly in the relative axonal density in each molecular layer along the septotemporal axis of the DG. In summary, this comparative analysis sheds light on both conserved and divergent features of MCs in the DG of mice and monkeys. These findings have implications for understanding functional differentiation along the septotemporal axis of the DG and contribute to our knowledge of the anatomical evolution of the DG circuit in mammals.


Asunto(s)
Axones , Calbindina 2 , Giro Dentado , Ratones Endogámicos C57BL , Animales , Masculino , Giro Dentado/citología , Giro Dentado/anatomía & histología , Calbindina 2/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Ratones , Especificidad de la Especie , Femenino
10.
Neuron ; 112(13): 2218-2230.e6, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38663401

RESUMEN

Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.


Asunto(s)
Conducta Alimentaria , Objetivos , Imagen por Resonancia Magnética , Animales , Conducta Alimentaria/fisiología , Masculino , Área Hipotalámica Lateral/fisiología , Neuronas GABAérgicas/fisiología , Tomografía de Emisión de Positrones , Macaca mulatta , Hipotálamo/fisiología , Hipotálamo/diagnóstico por imagen , Neuronas/fisiología , Femenino
11.
Lab Anim Res ; 39(1): 11, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264475

RESUMEN

Preclinical ischemic stroke studies extensively utilize the intraluminal suture method of middle cerebral artery occlusion (MCAo). General anesthesia administration is an essential step for MCAo, but anesthetic agents can lead to adverse effects causing death and making a considerable impact on inducing cerebral ischemia. The purpose of this study was to comparatively assess the effect of isoflurane and xylazine on transient cerebral ischemia in a mouse model of MCAo. Twenty animals were randomly divided into four groups: sham group (no MCAo), control group (MCAo under isoflurane, no agent till reperfusion), isoflurane group (MCAo under isoflurane continued till reperfusion), xylazine group (MCAo under isoflurane, and administration of xylazine till reperfusion). The survival rate, brain infarct volume, and neurologic deficits were studied to assess the effect of isoflurane and xylazine on the stroke model. Our results showed that the body weight showed statistically significant change before and 24 h after surgery in the control and Isoflurane groups, but no difference in the Xylazine group. Also, the survival rate, brain infarct volume, and neurologic deficits were slightly reduced in the isoflurane group at 24 h after reperfusion injury. However, the xylazine and control groups showed similar BIV and neurologic deficits. Interestingly, a high survival rate was observed in the xylazine group. Our results indicate that the modified method of inhalation anesthetics combined with xylazine can reduce the risk of mortality and develop a reproducible MCAo model with predictable brain ischemia. In addition, extended isoflurane anesthesia after MCAo is associated with the risk of mortality.

12.
Brain Res ; 1820: 148588, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742938

RESUMEN

The role of death-associated protein kinase1 (DAPK1) in post-stroke functional recovery is controversial, as is its mechanism of action and any neural remodeling effect after ischemia. To assess the debatable role of DAPK1, we established the middle cerebral artery occlusion (MCAo) model in DAPK1 knockout mice and Sprague-Dawley (SD) rats. We identified that the genetic deletion of the DAPK1 as well as pharmacological inhibition of DAPK1 showed reduced brain infarct volume and neurological deficit. We report that DAPK1 inhibition (DI) reduces post-stroke neuronal death by inhibiting BAX/BCL2 and LC3/Beclin1 mediated apoptosis and autophagy, respectively. Histological analysis displayed a reduction in nuclear condensation, neuronal dissociation, and degraded cytoplasm in the DI group. The DI treatment showed enhanced dendrite spine density and neurite outgrowth, upregulated neural proliferation marker proteins like brain-derived neurotrophic factor, and reduced structural abnormalities of the cortical pyramidal neurons. This research shows that DAPK1 drives cell death, its activation exacerbates functional recovery after cerebral ischemia and shows that oxazolone-based DI could be an excellent candidate for stroke and ischemic injury intervention.

13.
Commun Biol ; 6(1): 879, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640792

RESUMEN

Characterizing the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the molecular level is necessary to understand viral pathogenesis and identify clinically relevant biomarkers. However, in humans, the pulmonary host response during disease onset remains poorly understood. Herein, we utilized a spatial transcriptome atlas to identify pulmonary microstructure-specific COVID-19 gene signatures during the acute phase of lung infection in cynomolgus macaques. The innate immune response to virus-induced cell death was primarily active in the alveolar regions involving activated macrophage infiltration. Inflamed vascular regions exhibited prominent upregulation of interferon and complement pathway genes that mediate antiviral activity and tissue damage response. Furthermore, known biomarker genes were significantly expressed in specific microstructures, and some of them were universally expressed across all microstructures. These findings underscore the importance of identifying key drivers of disease progression and clinically applicable biomarkers by focusing on pulmonary microstructures appearing during SARS-CoV-2 infection.


Asunto(s)
Ascomicetos , COVID-19 , Humanos , Animales , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Macaca fascicularis , Pulmón
14.
Artículo en Inglés | MEDLINE | ID: mdl-36498144

RESUMEN

Coronavirus disease 2019 (COVID-19) led to the loss of lives and had serious social and economic effects. Countries implemented various quarantine policies to reduce the effects. The countries were divided into low- and high-risk groups based on the differences in quarantine policies and their levels of infection. Quarantine policies that significantly contributed to risk reduction were determined by analyzing 11 quarantine indicators for reducing the spread of COVID-19. The cross-tabulation and Chi-square tests were used to compare the quarantine policies by the groups. Multivariate logistic regression was used to determine the useful quarantine policies implemented by the low-risk group to verify quarantine policies for minimizing the negative effects. The analysis showed that the low- and medium-risk groups showed significant differences for 9 of the 11 indicators, and 4 of these differentiated the low- from the medium-risk group. Countries with strict quarantine policies related to workplace closure and staying at home were more likely to be included in the low-risk group. These policies had a significant impact in the low-risk countries and could contribute to reducing the spread and effects of COVID-19 in countries included in the high-risk group.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Cuarentena , Gobierno
15.
Exp Neurobiol ; 31(6): 409-418, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36631849

RESUMEN

Till date, researchers have been developing animal models of Alzheimer's disease (AD) in various species to understand the pathological characterization and molecular mechanistic pathways associated with this condition in humans to identify potential therapeutic treatments. A widely recognized AD model that mimics the pathology of human AD involves the intracerebroventricular (ICV) injection with streptozotocin (STZ). However, ICV injection as an invasive approach has several limitations related to complicated surgical procedures. Therefore, in the present study, we created a customized stereotaxic frame using the XperCT-guided system for injecting STZ in cynomolgus monkeys, aiming to establish an AD model. The anatomical structures surrounding the cisterna magna (CM) were confirmed using CT/MRI fusion images of monkey brain with XperCT, the c-arm cone beam computed tomography. XperCT was used to determine the appropriate direction in which the needle tip should be inserted within the CM region. Cerebrospinal fluid (CSF) was collected to confirm the accurate target site when STZ was injected into the CM. Cynomolgus monkeys were administered STZ dissolved in artificial CSF once every week for 4 weeks via intracisterna magna (ICM) injection using XperCT-guided stereotactic system. The molecular mechanisms underlying the progression of STZ-induced AD pathology were analyzed two weeks after the final injection. The monkeys subjected to XperCT-based STZ injection via the ICM route showed features of AD pathology, including markedly enhanced neuronal loss, synaptic impairment, and tau phosphorylation in the hippocampus. These findings suggest a new approach for the construction of neurodegenerative disease models and development of therapeutic strategies.

16.
Parkinsons Dis ; 2022: 4382145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407681

RESUMEN

The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.

17.
J Am Heart Assoc ; 10(15): e021824, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34275325

RESUMEN

Background In tandem stenoses, nonhyperemic pressure ratio pullback is the preferred method to fractional flow reserve (FFR), based on the assumption of stable resting coronary flow. This study aimed to evaluate temporal changes of coronary circulatory indexes in tandem stenoses before and after angioplasty for proximal stenosis. Methods and Results Coronary tandem stenoses were created by porcine restenosis model with 2 bare metal stents in the left anterior descending artery. Four weeks later, changes in distal coronary pressure (Pd), averaged peak velocity, microvascular resistance, transstenotic pressure gradient across distal stenosis, resting Pd/aortic pressure, and FFR were measured before and 1, 5, 10, 15, and 20 minutes after balloon angioplasty for proximal stenosis. After angioplasty, there were significant changes in both resting and hyperemic Pd, averaged peak velocity, microvascular resistance, and transstenotic pressure gradient across distal stenosis (all P values <0.01). After initial acute changes, hyperemic averaged peak velocity and microvascular resistance did not show significant difference from the baseline values (P=0.712 and 0.972, respectively). Conversely, resting averaged peak velocity remained increased (10.1±0.7 to 17.8±0.7; P<0.001) and resting microvascular resistance decreased (6.0±0.1 to 2.2±0.7; P<0.001). Transstenotic pressure gradient across distal stenosis was significantly increased in both resting (13.1±7.6 to 25.3±4.2; P=0.040) and hyperemic conditions (11.0±3.0 to 27.4±3.3 mm Hg; P<0.001). Actual post-percutaneous coronary intervention Pd/aortic pressure and FFR were significantly lower than predicted values (Pd/aortic pressure, 0.68±0.22 versus 0.85±0.14; P<0.001; FFR, 0.63±0.08 versus 0.81±0.08; P<0.001). Conclusions After angioplasty for proximal stenosis, transstenotic pressure gradient across distal stenosis showed similar changes between resting and hyperemic conditions. Both actual post-percutaneous coronary intervention resting Pd/aortic pressure and FFR were significantly lower than predicted values.


Asunto(s)
Angioplastia Coronaria con Balón , Estenosis Coronaria , Vasos Coronarios , Angioplastia Coronaria con Balón/efectos adversos , Angioplastia Coronaria con Balón/métodos , Animales , Angiografía Coronaria/métodos , Reestenosis Coronaria/diagnóstico , Reestenosis Coronaria/etiología , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Reserva del Flujo Fraccional Miocárdico , Microcirculación , Cuidados Posoperatorios/métodos , Cuidados Preoperatorios/métodos , Porcinos , Resistencia Vascular
18.
Lab Anim Res ; 36: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32551298

RESUMEN

To date, researchers have developed various animal models of Alzheimer's disease (AD) to investigate its mechanisms and to identify potential therapeutic treatments. A widely recognized model that mimics the pathology of human sporadic AD involves intracerebroventricular (ICV) injection with streptozotocin (STZ). However, ICV injections are an invasive approach, which creates limitations in generalizing the results. In this study, we produced a rodent model of AD using STZ (3 mg/kg) injection via the cisterna magna (CM) once every week for 4 weeks, and analyzed at 4 weeks and 16 weeks after final injection. In the CM-STZ rodent model of AD, we observed increase in extracellular amyloid-beta (Aß) deposition and decrease and abnormal morphology of post-synaptic protein, PSD95 in 16 weeks STZ-injected group. The model developed using our less-invasive method induced features of AD-like pathology, including significantly increased extracellular amyloid-beta deposition, and decreased synaptic protein in the hippocampus. These findings supporting the success of this alternative approach, and thus, we suggest this is a promising, less invasive model for use in future AD research.

19.
Front Cell Neurosci ; 14: 235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903692

RESUMEN

Aberrant brain insulin signaling plays a critical role in the pathology of Alzheimer's disease (AD). Mitochondrial dysfunction plays a role in the progression of AD, with excessive mitochondrial fission in the hippocampus being one of the pathological mechanisms of AD. However, the molecular mechanisms underlying the progression of AD and mitochondrial fragmentation induced by aberrant brain insulin signaling in the hippocampal neurons are poorly understood. Therefore, we investigated the molecular mechanistic signaling associated with mitochondrial dynamics using streptozotocin (STZ), a diabetogenic compound, in the hippocampus cell line, HT-22 cells. In this metabolic dysfunctional cellular model, hallmarks of AD such as neuronal apoptosis, synaptic loss, and tau hyper-phosphorylation are induced by STZ. We found that in the mitochondrial fission protein Drp1, phosphorylation is increased in STZ-treated HT-22 cells. We also determined that inhibition of mitochondrial fragmentation suppresses STZ-induced AD-like pathology. Furthermore, we found that phosphorylation of Drp1 was induced by CDK5, and inhibition of CDK5 suppresses STZ-induced mitochondrial fragmentation and AD-like pathology. Therefore, these findings indicate that mitochondrial morphology and functional regulation may be a strategy of potential therapeutic for treating abnormal metabolic functions associated with the pathogenesis of AD.

20.
Exp Neurobiol ; 29(4): 300-313, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32921642

RESUMEN

Ischemic stroke results from arterial occlusion and can cause irreversible brain injury. A non-human primate (NHP) model of ischemic stroke was previously developed to investigate its pathophysiology and for efficacy testing of therapeutic candidates; however, fine motor impairment remains to be well-characterized. We evaluated hand motor function in a cynomolgus monkey model of ischemic stroke. Endovascular transient middle cerebral artery occlusion (MCAO) with an angiographic microcatheter induced cerebral infarction. In vivo magnetic resonance imaging mapped and measured the ischemia-induced infarct lesion. In vivo diffusion tensor imaging (DTI) of the stroke lesion to assess the neuroplastic changes and fiber tractography demonstrated three-dimensional patterns in the corticospinal tract 12 weeks after MCAO. The hand dexterity task (HDT) was used to evaluate fine motor movement of upper extremity digits. The HDT was modified for a home cage-based training system, instead of conventional chair restraint training. The lesion was localized in the middle cerebral artery territory, including the sensorimotor cortex. Maximum infarct volume was exhibited over the first week after MCAO, which progressively inhibited ischemic core expansion, manifested by enhanced functional recovery of the affected hand over 12 weeks after MCAO. The total performance time decreased with increasing success rate for both hands on the HDT. Compensatory strategies and retrieval failure improved in the chronic phase after stroke. Our findings demonstrate the recovery of fine motor skill after stroke, and outline the behavioral characteristics and features of functional disorder of NHP stroke model, providing a basis for assessing hand motor function after stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA